login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049816
Triangular array T read by rows: T(n,k) = number of nonzero remainders when Euclidean algorithm acts on n and k, for k=1..n, n>=1.
16
0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 1, 0, 0, 0, 2, 0, 3, 1, 1, 0, 0, 1, 0, 1, 2, 1, 2, 1, 0, 0, 0, 1, 1, 0, 2, 2, 1, 1, 0, 0, 1, 2, 2, 1, 2, 3, 3, 2, 1, 0, 0, 0, 0, 0, 2, 0, 3, 1, 1, 1, 1, 0, 0, 1, 1, 1, 3, 1, 2, 4, 2, 2, 2, 1, 0
OFFSET
1,13
LINKS
EXAMPLE
Triangle begins:
0,
0, 0,
0, 1, 0,
0, 0, 1, 0,
0, 1, 2, 1, 0,
0, 0, 0, 1, 1, 0,
0, 1, 1, 2, 2, 1, 0,
0, 0, 2, 0, 3, 1, 1, 0,
0, 1, 0, 1, 2, 1, 2, 1, 0,
0, 0, 1, 1, 0, 2, 2, 1, 1, 0,
0, 1, 2, 2, 1, 2, 3, 3, 2, 1, 0,
0, 0, 0, 0, 2, 0, 3, 1, 1, 1, 1, 0,
0, 1, 1, 1, 3, 1, 2, 4, 2, 2, 2, 1, 0,
...
MAPLE
T:= proc(x, y) option remember;
`if`(y=0, -1, 1+T(y, irem(x, y)))
end:
seq(seq(T(n, k), k=1..n), n=1..15); # Alois P. Heinz, Nov 29 2023
MATHEMATICA
R[n_, k_] := R[n, k] = With[{r = Mod[n, k]}, If[r == 0, 1, R[k, r] + 1]];
T[n_, k_] := R[n, k] - 1;
Table[T[n, k], {n, 1, 13}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 12 2019, after Robert Israel in A107435 *)
CROSSREFS
Row sums give A049817.
Sequence in context: A114448 A068933 A015472 * A328958 A143542 A072612
KEYWORD
nonn,tabl
STATUS
approved