login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Positive integers n such that sigma_0(n) - 3 = (omega(n) - 1) * nu(n), where sigma_0 = A000005, nu = A001221, omega = A001222.
6

%I #5 Nov 03 2019 19:50:30

%S 36,60,84,90,100,126,132,140,150,156,196,198,204,220,225,228,234,260,

%T 276,294,306,308,315,340,342,348,350,364,372,380,414,441,444,460,476,

%U 484,490,492,495,516,522,525,532,550,558,564,572,580,585,620,636,644,650

%N Positive integers n such that sigma_0(n) - 3 = (omega(n) - 1) * nu(n), where sigma_0 = A000005, nu = A001221, omega = A001222.

%C These appear to be all positive integers with prime signature (2,2), (2,1,1), (1,2,1), or (1,1,2).

%F A000005(a(n)) - 3 = (A001222(a(n)) - 1) * A001221(a(n)).

%e The sequence of terms together with their prime indices begins:

%e 36: {1,1,2,2}

%e 60: {1,1,2,3}

%e 84: {1,1,2,4}

%e 90: {1,2,2,3}

%e 100: {1,1,3,3}

%e 126: {1,2,2,4}

%e 132: {1,1,2,5}

%e 140: {1,1,3,4}

%e 150: {1,2,3,3}

%e 156: {1,1,2,6}

%e 196: {1,1,4,4}

%e 198: {1,2,2,5}

%e 204: {1,1,2,7}

%e 220: {1,1,3,5}

%e 225: {2,2,3,3}

%e 228: {1,1,2,8}

%e 234: {1,2,2,6}

%e 260: {1,1,3,6}

%e 276: {1,1,2,9}

%t Select[Range[100],DivisorSigma[0,#]-3==(PrimeOmega[#]-1)*PrimeNu[#]&]

%Y Prime signature is A124010.

%Y (omega(n) - 1) * nu(n) is A307409(n).

%Y sigma_0(n) - omega(n) * nu(n) is A328958(n).

%Y sigma_0(n) - 2 - (omega(n) - 1) * nu(n) is A328959(n).

%Y Cf. A000005, A001221, A001222, A113901, A320632, A328956, A328960, A328963, A328965.

%K nonn

%O 1,1

%A _Gus Wiseman_, Nov 02 2019