login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365108
a(n) is the smallest integer value of (p^n - q^n)/n for all choices of integers p > q >= 0.
1
1, 2, 9, 4, 625, 672, 117649, 32, 2187, 5941760, 25937424601, 1397760, 23298085122481, 308548739072, 29192926025390625, 4096, 48661191875666868481, 3817734144, 104127350297911241532841, 174339220, 209430786243, 24639156314201655345152, 907846434775996175406740561329
OFFSET
1,2
COMMENTS
(p^n - q^n)/n has the integer value n^(n - 1) for p = n and q = 0. For p = n + k + 1 (k: nonnegative integer) the term has its minimum for q = n + k. With the binomial theorem follows ((n + k + 1)^n - (n + k)^n)/n >= ((n + k)^n - n*(n + k)^(n - 1) - (n + k)^n)/n = (n + k)^(n - 1) >= n^(n - 1). Therefore, for p > n, there is no smaller value of (p^n - q^n)/n than n^(n - 1). Thus a(n) <= n^(n - 1) exists with 1 <= p <= n and 0 <= q <= p - 1.
a(n) is also the smallest integer value that the integral over f(x) = x^(n - 1) between the nonnegative integer integration limits q and p (p > q) can have.
LINKS
FORMULA
a(n) is the integer minimum of (p^n - q^n)/n for 1 <= p <= n and 0 <= q <= p - 1.
EXAMPLE
For n = 5, a(5) = 672 with p = 4 and q = 2.
MAPLE
A365108 := proc(n) local q, p, s, a_n; a_n := n^(n - 1); for p to n do for q from 0 to p - 1 do s := (p^n - q^n)/n; if s = floor(s) and s < a_n then a_n := s; end if; end do; end do; return a_n; end proc;
seq(A365108(n), n = 1 .. 23);
PROG
(Python)
from sympy.ntheory.residue_ntheory import nthroot_mod
def A365108(n):
c, qdict = n**(n-1), {}
for p in range(1, n+1):
r, m = pow(p, n, n), p**n
if r not in qdict:
qdict[r] = tuple(nthroot_mod(r, n, n, all_roots=True))
c = min(c, min(((m-q**n)//n for q in qdict[r] if q<p), default=c))
return int(c) # Chai Wah Wu, Sep 23 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Felix Huber, Aug 21 2023
STATUS
approved