Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #50 Apr 04 2024 11:10:36
%S 1,2,9,4,625,672,117649,32,2187,5941760,25937424601,1397760,
%T 23298085122481,308548739072,29192926025390625,4096,
%U 48661191875666868481,3817734144,104127350297911241532841,174339220,209430786243,24639156314201655345152,907846434775996175406740561329
%N a(n) is the smallest integer value of (p^n - q^n)/n for all choices of integers p > q >= 0.
%C (p^n - q^n)/n has the integer value n^(n - 1) for p = n and q = 0. For p = n + k + 1 (k: nonnegative integer) the term has its minimum for q = n + k. With the binomial theorem follows ((n + k + 1)^n - (n + k)^n)/n >= ((n + k)^n - n*(n + k)^(n - 1) - (n + k)^n)/n = (n + k)^(n - 1) >= n^(n - 1). Therefore, for p > n, there is no smaller value of (p^n - q^n)/n than n^(n - 1). Thus a(n) <= n^(n - 1) exists with 1 <= p <= n and 0 <= q <= p - 1.
%C a(n) is also the smallest integer value that the integral over f(x) = x^(n - 1) between the nonnegative integer integration limits q and p (p > q) can have.
%H Felix Huber, <a href="/A365108/b365108.txt">Table of n, a(n) for n = 1..388</a>
%F a(n) is the integer minimum of (p^n - q^n)/n for 1 <= p <= n and 0 <= q <= p - 1.
%e For n = 5, a(5) = 672 with p = 4 and q = 2.
%p A365108 := proc(n) local q, p, s, a_n; a_n := n^(n - 1); for p to n do for q from 0 to p - 1 do s := (p^n - q^n)/n; if s = floor(s) and s < a_n then a_n := s; end if; end do; end do; return a_n; end proc;
%p seq(A365108(n), n = 1 .. 23);
%o (Python)
%o from sympy.ntheory.residue_ntheory import nthroot_mod
%o def A365108(n):
%o c, qdict = n**(n-1), {}
%o for p in range(1,n+1):
%o r, m = pow(p,n,n), p**n
%o if r not in qdict:
%o qdict[r] = tuple(nthroot_mod(r,n,n,all_roots=True))
%o c = min(c,min(((m-q**n)//n for q in qdict[r] if q<p),default=c))
%o return int(c) # _Chai Wah Wu_, Sep 23 2023
%Y Cf. A000169, A055860, A020725.
%K nonn
%O 1,2
%A _Felix Huber_, Aug 21 2023