login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365106
Sum_{n>=0} a(n) * x^n / n!^2 = exp( Sum_{n>=1} prime(n) * x^n / n!^2 ).
0
1, 2, 11, 107, 1577, 32201, 860460, 28921567, 1187475909, 58232016701, 3350187053856, 222857979706305, 16935374386652282, 1455271176236200143, 140181486948923188907, 15023106134895469195114, 1779460642743292348315607, 231607462899834684300774917, 32954119475274480307491604062, 5102159139278049158548905019487
OFFSET
0,2
FORMULA
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} binomial(n,k)^2 * k * prime(k) * a(n-k).
MATHEMATICA
nmax = 19; CoefficientList[Series[Exp[Sum[Prime[k] x^k/k!^2, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!^2
a[0] = 1; a[n_] := a[n] = (1/n) Sum[Binomial[n, k]^2 k Prime[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
CROSSREFS
Sequence in context: A198001 A207155 A292566 * A053988 A141314 A363481
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 21 2023
STATUS
approved