login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363905
Numbers whose square and cube taken together contain each decimal digit.
4
69, 128, 203, 302, 327, 366, 398, 467, 542, 591, 593, 598, 633, 643, 669, 690, 747, 759, 903, 923, 943, 1016, 1018, 1027, 1028, 1043, 1086, 1112, 1182, 1194, 1199, 1233, 1278, 1280, 1282, 1328, 1336, 1364, 1396, 1419, 1459, 1463, 1467, 1472, 1475
OFFSET
1,1
COMMENTS
The first term, a(1) = 69, is the only number for which the square and the cube together contain each decimal digit 0 to 9 exactly once.
a(820) = 6534 is the only number of which the square and cube taken together contain each digit 0 to 9 exactly twice.
LINKS
Harold Suarez, Interesting..., Number Theory group on LinkedIn, June 2023.
EXAMPLE
69^2 = 4761, 69^3 = 328509, which together contain each digit 0-9 exactly once.
MATHEMATICA
fQ[n_] := Union[ Join[ IntegerDigits[n^2], IntegerDigits[n^3]]] == {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; Select[Range@1500, fQ] (* Robert G. Wilson v, Jun 27 2023 *)
PROG
(PARI) is(k)=#setunion(Set(digits(k^2)), Set(digits(k^3)))>9
select(is, [1..9999])
(Python)
from itertools import count, islice
def A363905_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda n:len(set(str(n**2))|set(str(n**3)))==10, count(max(startvalue, 1)))
A363905_list = list(islice(A363905_gen(), 20)) # Chai Wah Wu, Jun 27 2023
CROSSREFS
Cf. A036744, A054038, A071519 and A156977 for "pandigital" squares.
Cf. A119735: Numbers n such that every digit occurs at least once in n^3.
Sequence in context: A004237 A004238 A039541 * A044192 A044573 A063355
KEYWORD
nonn,base,less
AUTHOR
M. F. Hasler, Jun 27 2023
STATUS
approved