The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A156977 Numbers n such that n^2 contains every decimal digit exactly once. 10
 32043, 32286, 33144, 35172, 35337, 35757, 35853, 37176, 37905, 38772, 39147, 39336, 40545, 42744, 43902, 44016, 45567, 45624, 46587, 48852, 49314, 49353, 50706, 53976, 54918, 55446, 55524, 55581, 55626, 56532, 57321, 58413, 58455, 58554, 59403, 60984 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS There are exactly 87 such numbers, no one of them being prime. Since 0 + 1 +...+ 9 = 5*9, every pandigital number is divisible by 9, hence no a(n) can be prime. - Giovanni Resta, Mar 19 2013 LINKS Giovanni Resta, Table of n, a(n) for n = 1..87 (full sequence) FORMULA a(n) = sqrt(A036745(n)). MAPLE lim:=floor(sqrt(9876543210)): for n from floor(sqrt(1023456789)) to lim do d:=[op(convert(n^2, base, 10))]: pandig:=true: for k from 0 to 9 do if(numboccur(k, d)<>1)then pandig:=false: break: fi: od: if(pandig)then printf("%d, ", n): fi: od: # Nathaniel Johnston, Jun 22 2011 MATHEMATICA Select[Range[Floor@Sqrt@1023456789, Ceiling@Sqrt@9876543210], Sort@IntegerDigits[#^2] == Range[0, 9] &] (* Giovanni Resta, Mar 19 2013 *) PROG (MAGMA) [n: n in [Floor(Sqrt(1023456789))..Ceiling(Sqrt(9876543210))] | Set(Intseq(n^2)) eq {0..9}]; // Bruno Berselli, Mar 19 2013 (after Giovanni Resta) CROSSREFS Cf. A036745, A054037, A054038. Sequence in context: A224621 A231613 A054038 * A217368 A097282 A264499 Adjacent sequences:  A156974 A156975 A156976 * A156978 A156979 A156980 KEYWORD fini,full,nonn,base AUTHOR Zak Seidov, Feb 20 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 26 12:33 EST 2020. Contains 332279 sequences. (Running on oeis4.)