

A231613


Numbers n such that the four sixthdegree cyclotomic polynomials are simultaneously prime.


4



32034, 162006, 339105, 458811, 1780425, 2989119, 2993100, 3080205, 4375404, 6129597, 6280221, 7565142, 8489820, 10268277, 11343741, 12065076, 13067295, 13333182, 15866508, 16472802, 17040537, 18028605, 19066758, 22633629, 24256362, 24365259, 25031349
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The polynomials are cyclotomic(7,x) = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6, cyclotomic(9,x) = 1 + x^3 + x^6, cyclotomic(14,x) = 1  x + x^2  x^3 + x^4  x^5 + x^6, and cyclotomic(18,x) = 1  x^3 + x^6. The numbers 7, 9, 14 and 18 are in the sixth row of A032447.
By Schinzel's hypothesis H, there are an infinite number of n that yield simultaneous primes. Note that the two firstdegree cyclotomic polynomials, x1 and x+1, yield the twin primes for the numbers in A014574.


REFERENCES

See A087277.


LINKS

Table of n, a(n) for n=1..27.


MATHEMATICA

t = {}; n = 0; While[Length[t] < 30, n++; If[PrimeQ[Cyclotomic[7, n]] && PrimeQ[Cyclotomic[9, n]] && PrimeQ[Cyclotomic[14, n]] && PrimeQ[Cyclotomic[18, n]], AppendTo[t, n]]]; t
Select[Range[251*10^5], AllTrue[Cyclotomic[{7, 9, 14, 18}, #], PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Oct 29 2016 *)


CROSSREFS

Cf. A014574 (first degree solutions: average of twin primes).
Cf. A087277 (similar, but with seconddegree cyclotomic polynomials).
Cf. A231612 (similar, but with fourthdegree cyclotomic polynomials).
Cf. A231614 (similar, but with eighthdegree cyclotomic polynomials).
Sequence in context: A269319 A197114 A224621 * A054038 A156977 A217368
Adjacent sequences: A231610 A231611 A231612 * A231614 A231615 A231616


KEYWORD

nonn


AUTHOR

T. D. Noe, Dec 11 2013


STATUS

approved



