OFFSET
0,4
COMMENTS
Equivalently, n = (length)*(minimum).
EXAMPLE
The a(2) = 1 through a(7) = 14 partitions:
(31) (321) (62) (32221) (93) (3222221)
(411) (3221) (33211) (552) (3322211)
(3311) (42211) (642) (3332111)
(4211) (43111) (732) (4222211)
(5111) (52111) (822) (4322111)
(61111) (322221) (4331111)
(332211) (4421111)
(333111) (5222111)
(422211) (5321111)
(432111) (5411111)
(441111) (6221111)
(522111) (6311111)
(531111) (7211111)
(621111) (8111111)
(711111)
MATHEMATICA
Table[Length[Select[IntegerPartitions[2n], 2*Min@@#==Mean[#]&]], {n, 0, 15}]
PROG
(Python)
from sympy.utilities.iterables import partitions
def A363132(n): return sum(1 for s, p in partitions(n<<1, m=n, size=True) if n==s*min(p, default=0)) if n else 0 # Chai Wah Wu, Sep 21 2023
CROSSREFS
Removing the factor 2 gives A099777.
Taking maximum instead of mean and including odd indices gives A118096.
For length instead of mean and including odd indices we have A237757.
For median instead of mean we have A361861.
These partitions have ranks A363133.
For maximum instead of minimum we have A363218.
For median instead of minimum we have A363224.
A051293 counts subsets with integer mean.
A067538 counts partitions with integer mean.
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 23 2023
EXTENSIONS
a(31)-a(46) from Chai Wah Wu, Sep 21 2023
STATUS
approved