OFFSET
1,2
COMMENTS
Also numbers whose greatest prime index (A061395) is twice their number of distinct prime factors (A001221). - Gus Wiseman, Mar 19 2023
LINKS
John Tyler Rascoe, Table of n, a(n) for n = 1..1000
EXAMPLE
28 is included because 7 is the largest prime dividing 28. And of the primes <= 7 (2,3,5,7), 2 and 7 (2 primes) divide 28 and 3 and 5 (also 2 primes) do not divide 28.
From Gus Wiseman, Mar 19 2023: (Start)
The terms together with their prime indices begin:
1: {}
3: {2}
9: {2,2}
14: {1,4}
21: {2,4}
27: {2,2,2}
28: {1,1,4}
35: {3,4}
56: {1,1,1,4}
63: {2,2,4}
78: {1,2,6}
81: {2,2,2,2}
98: {1,4,4}
112: {1,1,1,1,4}
130: {1,3,6}
147: {2,4,4}
156: {1,1,2,6}
For example, 156 is included because it has prime indices {1,1,2,6}, with distinct parts {1,2,6} and distinct non-parts {3,4,5}, both of length 3. Alternatively, 156 has greatest prime index 6 and omega 3, and 6 = 2*3.
(End)
MATHEMATICA
Select[Range[100], 2*PrimeNu[#]==PrimePi[FactorInteger[#][[-1, 1]]]&] (* Gus Wiseman, Mar 19 2023 *)
PROG
(PARI) {m=950; v=vector(m); for(n=1, m, f=factor(n)[, 1]~; c=0; pc=0; forprime(p=2, vecmax(f), j=1; s=length(f); while(j<=s&&p!=f[j], j++); if(j<=s, c++); pc++); v[n]=sign(pc-2*c)); for(n=1, m, if(v[n]==0, print1(n, ", ")))} \\ Klaus Brockhaus, Aug 21 2005
(Python)
from itertools import count, islice
from sympy import sieve, factorint
def a_gen():
yield 1
for k in count(3):
f = [sieve.search(i)[0] for i in factorint(k)]
if 2*len(f) == f[-1]:
yield k
A111907_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, Jun 20 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Leroy Quet, Aug 19 2005
EXTENSIONS
More terms from Klaus Brockhaus, Aug 21 2005
STATUS
approved