The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A111907 Numbers k such that the same number of primes, among primes <= the largest prime dividing k, divide k as do not. 29
 1, 3, 9, 14, 21, 27, 28, 35, 56, 63, 78, 81, 98, 112, 130, 147, 156, 175, 182, 189, 195, 196, 224, 234, 243, 245, 260, 273, 286, 312, 364, 392, 429, 441, 448, 455, 468, 520, 567, 570, 572, 585, 624, 650, 686, 702, 715, 728, 729, 784, 798, 819, 875, 896, 936 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Also numbers whose greatest prime index (A061395) is twice their number of distinct prime factors (A001221). - Gus Wiseman, Mar 19 2023 LINKS John Tyler Rascoe, Table of n, a(n) for n = 1..1000 EXAMPLE 28 is included because 7 is the largest prime dividing 28. And of the primes <= 7 (2,3,5,7), 2 and 7 (2 primes) divide 28 and 3 and 5 (also 2 primes) do not divide 28. From Gus Wiseman, Mar 19 2023: (Start) The terms together with their prime indices begin: 1: {} 3: {2} 9: {2,2} 14: {1,4} 21: {2,4} 27: {2,2,2} 28: {1,1,4} 35: {3,4} 56: {1,1,1,4} 63: {2,2,4} 78: {1,2,6} 81: {2,2,2,2} 98: {1,4,4} 112: {1,1,1,1,4} 130: {1,3,6} 147: {2,4,4} 156: {1,1,2,6} For example, 156 is included because it has prime indices {1,1,2,6}, with distinct parts {1,2,6} and distinct non-parts {3,4,5}, both of length 3. Alternatively, 156 has greatest prime index 6 and omega 3, and 6 = 2*3. (End) MATHEMATICA Select[Range[100], 2*PrimeNu[#]==PrimePi[FactorInteger[#][[-1, 1]]]&] (* Gus Wiseman, Mar 19 2023 *) PROG (PARI) {m=950; v=vector(m); for(n=1, m, f=factor(n)[, 1]~; c=0; pc=0; forprime(p=2, vecmax(f), j=1; s=length(f); while(j<=s&&p!=f[j], j++); if(j<=s, c++); pc++); v[n]=sign(pc-2*c)); for(n=1, m, if(v[n]==0, print1(n, ", ")))} \\ Klaus Brockhaus, Aug 21 2005 (Python) from itertools import count, islice from sympy import sieve, factorint def a_gen(): yield 1 for k in count(3): f = [sieve.search(i)[0] for i in factorint(k)] if 2*len(f) == f[-1]: yield k A111907_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, Jun 20 2024 CROSSREFS For length instead of maximum we have A067801. These partitions are counted by A239959. A001222 (bigomega) counts prime factors, distinct A001221 (omega). A061395 gives greatest prime index. A112798 lists prime indices, sum A056239. Comparing twice the number of distinct parts to greatest part: less: A360254, ranks A111906 equal: A239959, ranks A111907 greater: A237365, ranks A111905 less or equal: A237363, ranks A361204 greater or equal: A361394, ranks A361395 Cf. A046660, A067340, A324517, A324521, A324562, A361205, A361393. Sequence in context: A103813 A001968 A305373 * A309149 A294480 A195972 Adjacent sequences: A111904 A111905 A111906 * A111908 A111909 A111910 KEYWORD nonn AUTHOR Leroy Quet, Aug 19 2005 EXTENSIONS More terms from Klaus Brockhaus, Aug 21 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 15:18 EDT 2024. Contains 375073 sequences. (Running on oeis4.)