Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Jun 21 2024 07:35:03
%S 1,3,9,14,21,27,28,35,56,63,78,81,98,112,130,147,156,175,182,189,195,
%T 196,224,234,243,245,260,273,286,312,364,392,429,441,448,455,468,520,
%U 567,570,572,585,624,650,686,702,715,728,729,784,798,819,875,896,936
%N Numbers k such that the same number of primes, among primes <= the largest prime dividing k, divide k as do not.
%C Also numbers whose greatest prime index (A061395) is twice their number of distinct prime factors (A001221). - _Gus Wiseman_, Mar 19 2023
%H John Tyler Rascoe, <a href="/A111907/b111907.txt">Table of n, a(n) for n = 1..1000</a>
%e 28 is included because 7 is the largest prime dividing 28. And of the primes <= 7 (2,3,5,7), 2 and 7 (2 primes) divide 28 and 3 and 5 (also 2 primes) do not divide 28.
%e From _Gus Wiseman_, Mar 19 2023: (Start)
%e The terms together with their prime indices begin:
%e 1: {}
%e 3: {2}
%e 9: {2,2}
%e 14: {1,4}
%e 21: {2,4}
%e 27: {2,2,2}
%e 28: {1,1,4}
%e 35: {3,4}
%e 56: {1,1,1,4}
%e 63: {2,2,4}
%e 78: {1,2,6}
%e 81: {2,2,2,2}
%e 98: {1,4,4}
%e 112: {1,1,1,1,4}
%e 130: {1,3,6}
%e 147: {2,4,4}
%e 156: {1,1,2,6}
%e For example, 156 is included because it has prime indices {1,1,2,6}, with distinct parts {1,2,6} and distinct non-parts {3,4,5}, both of length 3. Alternatively, 156 has greatest prime index 6 and omega 3, and 6 = 2*3.
%e (End)
%t Select[Range[100],2*PrimeNu[#]==PrimePi[FactorInteger[#][[-1,1]]]&] (* _Gus Wiseman_, Mar 19 2023 *)
%o (PARI) {m=950;v=vector(m);for(n=1,m,f=factor(n)[,1]~;c=0;pc=0;forprime(p=2,vecmax(f), j=1;s=length(f);while(j<=s&&p!=f[j],j++);if(j<=s,c++);pc++);v[n]=sign(pc-2*c)); for(n=1,m,if(v[n]==0,print1(n,",")))} \\ _Klaus Brockhaus_, Aug 21 2005
%o (Python)
%o from itertools import count, islice
%o from sympy import sieve, factorint
%o def a_gen():
%o yield 1
%o for k in count(3):
%o f = [sieve.search(i)[0] for i in factorint(k)]
%o if 2*len(f) == f[-1]:
%o yield k
%o A111907_list = list(islice(a_gen(), 100)) # _John Tyler Rascoe_, Jun 20 2024
%Y For length instead of maximum we have A067801.
%Y These partitions are counted by A239959.
%Y A001222 (bigomega) counts prime factors, distinct A001221 (omega).
%Y A061395 gives greatest prime index.
%Y A112798 lists prime indices, sum A056239.
%Y Comparing twice the number of distinct parts to greatest part:
%Y less: A360254, ranks A111906
%Y equal: A239959, ranks A111907
%Y greater: A237365, ranks A111905
%Y less or equal: A237363, ranks A361204
%Y greater or equal: A361394, ranks A361395
%Y Cf. A046660, A067340, A324517, A324521, A324562, A361205, A361393.
%K nonn
%O 1,2
%A _Leroy Quet_, Aug 19 2005
%E More terms from _Klaus Brockhaus_, Aug 21 2005