login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361190
Number of 4n-step lattice paths starting and ending at (0,0) that do not go above the diagonal x=y or below the x-axis using steps in {(1,1), (1,-1), (-1,0)}.
2
1, 1, 9, 153, 3579, 101630, 3288871, 116951012, 4465824585, 180310624841, 7614208325878, 333613510494834, 15075162152856423, 699290488810583617, 33176816563410874752, 1605135467691243954419, 79003021319962788395355, 3947913343912428255683930
OFFSET
0,3
COMMENTS
Is this the same sequence as A217823?
LINKS
Wikipedia, Lattice path
FORMULA
a(n) = A217823(n) for n<=6.
EXAMPLE
a(0) = 1: (00), 0 steps are made.
a(1) = 1: (00)(11)(20)(10)(00).
a(2) = 9:
(00)(11)(20)(10)(00)(11)(20)(10)(00),
(00)(11)(20)(10)(21)(30)(20)(10)(00),
(00)(11)(20)(10)(21)(11)(20)(10)(00),
(00)(11)(20)(31)(40)(30)(20)(10)(00),
(00)(11)(20)(31)(21)(30)(20)(10)(00),
(00)(11)(20)(31)(21)(11)(20)(10)(00),
(00)(11)(22)(31)(40)(30)(20)(10)(00),
(00)(11)(22)(31)(21)(30)(20)(10)(00),
(00)(11)(22)(31)(21)(11)(20)(10)(00).
MAPLE
b:= proc(n, x, y) option remember; `if`(x+2*y>n, 0,
`if`(n=0, 1, `if`(y>0, b(n-1, x+1, y-1), 0)+
`if`(y<x, b(n-1, x-1, y), 0)+b(n-1, x+1, y+1)))
end:
a:= n-> b(4*n, 0$2):
seq(a(n), n=0..17);
CROSSREFS
Cf. A001006, A005789, A026945, A151332 (the same without condition on the diagonal), A217823, A359647.
Sequence in context: A151835 A217822 A217823 * A113391 A045755 A009037
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Jul 31 2023
STATUS
approved