login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359647
a(n) = [x^n] hypergeom([1/4, 3/4], [2], 64*x). The central terms of the Motzkin triangle A359364 without zeros.
2
1, 6, 140, 4620, 180180, 7759752, 356948592, 17210021400, 859544957700, 44123307828600, 2315270298060720, 123691561681243920, 6707888537328997200, 368417878127146461600, 20455964090297751153600, 1146556787261188952159280, 64797319609481605046295780
OFFSET
0,2
COMMENTS
Number of Motzkin paths of length 4n with exactly 2n horizontal steps: a(1) = 6: UDHH, UHDH, UHHD, HUDH, HUHD, HHUD. - Alois P. Heinz, Aug 02 2023
FORMULA
a(n) = A359364(4*n, 2*n).
a(n) = A000108(n) * A001448(n) = binomial(2*n,n)/(n+1)*binomial(4*n,2*n). - Alois P. Heinz, Aug 02 2023
MAPLE
ser := series(hypergeom([1/4, 3/4], [2], 64*x), x, 20):
seq(coeff(ser, x, n), n = 0..16);
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Jan 09 2023
STATUS
approved