login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359649
a(n) = hypergeom([(1 - n)/2, -n/2], [2], 4*n^2).
1
1, 1, 5, 28, 609, 6501, 272701, 4286815, 272156417, 5648748355, 484054204501, 12482361156398, 1351553781736225, 41650209565275195, 5460281206077347469, 195722005810272604876, 30156361094764202326017, 1232550298298392183231275, 218366864894707599746619685
OFFSET
0,3
FORMULA
a(n) = p(n, n), where p(n, x) = hypergeom([(1 - n)/2, -n/2], [2], (2*x)^2) are the Motzkin polynomials A359364.
a(n) ~ (exp(1) + (-1)^n) * 2^(n + 1/2) * n^(n - 3/2) / (sqrt(Pi) * exp(1/2)). - Vaclav Kotesovec, Jan 08 2024
MAPLE
a := n -> hypergeom([(1 - n)/2, -n/2], [2], 4*n^2):
seq(simplify(a(n)), n = 0..18);
CROSSREFS
Cf. A359364.
Sequence in context: A024068 A308593 A249784 * A346312 A359739 A344464
KEYWORD
nonn
AUTHOR
Peter Luschny, Jan 10 2023
STATUS
approved