The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A026945 A bisection of the Motzkin numbers A001006. 7
 1, 2, 9, 51, 323, 2188, 15511, 113634, 853467, 6536382, 50852019, 400763223, 3192727797, 25669818476, 208023278209, 1697385471211, 13933569346707, 114988706524270, 953467954114363, 7939655757745265, 66368199913921497 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) is the sum of the squares of numbers in row n of array T given by A026300. Number of closed walks of length 2n on the one-way infinite ladder graph starting from (and ending at) a node of degree 2. - Mitch Harris, Mar 06 2004 a(n) is the number of ways to connect 2n points labeled 1,2,...,2n in a line with 0 or more noncrossing arcs. For example, with arcs separated by dashes, a(2)=9 counts {} (no arcs), 12, 13, 14, 23, 24, 34, 12-34, 14-23. - David Callan, Sep 18 2007 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 I. Dolinka, J. East, A. Evangelou, D. FitzGerald and N. Ham, Idempotent Statistics of the Motzkin and Jones Monoids, arXiv preprint arXiv:1507.04838 [math.CO], 2015-2018. Veronika Irvine, Lace Tessellations: A mathematical model for bobbin lace and an exhaustive combinatorial search for patterns, PhD Dissertation, University of Victoria, 2016. Michael Torpey, Semigroup congruences: computational techniques and theoretical applications, Ph.D. Thesis, University of St. Andrews (Scotland, 2019). FORMULA a(n) = A005043(2n) + A005043(2n+1). - Ralf Stephan, Feb 06 2004 a(n) = Sum_{k=0..n} binomial(2n,2k)*C(k), C(n)=A000108(n); - Paul Barry, Jul 11 2008 a(n) = (2/Pi)*integral(x=-1..1, (1+2*x)^(2*n)*sqrt(1-x^2)). - Peter Luschny, Sep 11 2011 D-finite with recurrence: (n+1)*(2*n+1)*a(n) = (14*n^2+9*n-2)*a(n-1) + 3*(14*n^2-51*n+43)*a(n-2) - 27*(n-2)*(2*n-5)*a(n-3). - Vaclav Kotesovec, Oct 08 2012 a(n) ~ 3^(2*n+3/2)/(2^(5/2)*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 08 2012 G.f.: (1/x) * Series_Reversion( x * (1-x) * (1-2*x)^2 / (1 - 3*x + 3*x^2) ). - Paul D. Hanna, Oct 03 2014 From Peter Luschny, May 15 2016: (Start) a(n) = ((9-9*n)*(2*n-3)*(4*n+1)*a(n-2)+((8*n-2))*(10*n^2-5*n-3)*a(n-1))/((1+2*n)*(4*n-3)*(n+1)) for n>=2. a(n) = hypergeom([1/2-n, -n], [2], 4). (End) MAPLE G:=(1-x-(1-2*x-3*x^2)^(1/2))/(2*x^2): GG:=series(G, x=0, 60): 1, seq(coeff(GG, x^(2*n)), n=1..23); a := n -> hypergeom([1/2-n, -n], [2], 4); seq(simplify(a(n)), n=0..29); # Peter Luschny, May 15 2016 MATHEMATICA Table[SeriesCoefficient[(1-x-Sqrt[1-2*x-3*x^2])/(2*x^2), {x, 0, 2*n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 08 2012 *) MotzkinNumber = DifferenceRoot[Function[{y, n}, {(-3n-3)*y[n] + (-2n-5)*y[n+1] + (n+4)*y[n+2] == 0, y[0] == 1, y[1] == 1}]]; Table[MotzkinNumber[2n], {n, 0, 20}] (* Jean-François Alcover, Oct 27 2021 *) PROG (PARI) C(n)=binomial(2*n, n)/(n+1); a(n)=sum(k=0, n, binomial(2*n, 2*k)*C(k)); \\ Joerg Arndt, May 04 2013 (PARI) {a(n)=polcoeff(1/x*serreverse( x * (1-x) * (1-2*x)^2 /(1 - 3*x + 3*x^2 +x^2*O(x^n)) ), n)} for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Oct 03 2014 CROSSREFS Cf. A001006, A099250. Sequence in context: A020087 A277378 A079836 * A246464 A355397 A009310 Adjacent sequences: A026942 A026943 A026944 * A026946 A026947 A026948 KEYWORD nonn,easy AUTHOR EXTENSIONS Entry revised by N. J. A. Sloane, Nov 16 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 01:03 EST 2022. Contains 358594 sequences. (Running on oeis4.)