login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026945
A bisection of the Motzkin numbers A001006.
8
1, 2, 9, 51, 323, 2188, 15511, 113634, 853467, 6536382, 50852019, 400763223, 3192727797, 25669818476, 208023278209, 1697385471211, 13933569346707, 114988706524270, 953467954114363, 7939655757745265, 66368199913921497
OFFSET
0,2
COMMENTS
a(n) is the sum of the squares of numbers in row n of array T given by A026300.
Number of closed walks of length 2n on the one-way infinite ladder graph starting from (and ending at) a node of degree 2. - Mitch Harris, Mar 06 2004
a(n) is the number of ways to connect 2n points labeled 1,2,...,2n in a line with 0 or more noncrossing arcs. For example, with arcs separated by dashes, a(2)=9 counts {} (no arcs), 12, 13, 14, 23, 24, 34, 12-34, 14-23. - David Callan, Sep 18 2007
LINKS
Igor Dolinka, James East, Athanasios Evangelou, Desmond FitzGerald, Nicholas Ham, James Hyde, Nicholas Loughlin, and James Mitchell, Idempotent Statistics of the Motzkin and Jones Monoids, arXiv preprint arXiv:1507.04838 [math.CO], 2015-2018.
Rosa Orellana, Nancy Wallace, and Mike Zabrocki, Quasipartition and planar quasipartition algebras, Sém. Lotharingien Comb., Proc. 36th Conf. Formal Power Series Alg. Comb. (2024) Vol. 91B, Art. No. 50. See p. 7.
Michael Torpey, Semigroup congruences: computational techniques and theoretical applications, Ph.D. Thesis, University of St. Andrews (Scotland, 2019).
FORMULA
a(n) = A005043(2n) + A005043(2n+1). - Ralf Stephan, Feb 06 2004
a(n) = Sum_{k=0..n} binomial(2n,2k)*C(k), C(n)=A000108(n); - Paul Barry, Jul 11 2008
a(n) = (2/Pi)*integral(x=-1..1, (1+2*x)^(2*n)*sqrt(1-x^2)). - Peter Luschny, Sep 11 2011
D-finite with recurrence: (n+1)*(2*n+1)*a(n) = (14*n^2+9*n-2)*a(n-1) + 3*(14*n^2-51*n+43)*a(n-2) - 27*(n-2)*(2*n-5)*a(n-3). - Vaclav Kotesovec, Oct 08 2012
a(n) ~ 3^(2*n+3/2)/(2^(5/2)*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 08 2012
G.f.: (1/x) * Series_Reversion( x * (1-x) * (1-2*x)^2 / (1 - 3*x + 3*x^2) ). - Paul D. Hanna, Oct 03 2014
From Peter Luschny, May 15 2016: (Start)
a(n) = ((9-9*n)*(2*n-3)*(4*n+1)*a(n-2)+((8*n-2))*(10*n^2-5*n-3)*a(n-1))/((1+2*n)*(4*n-3)*(n+1)) for n>=2.
a(n) = hypergeom([1/2-n, -n], [2], 4). (End)
MAPLE
G:=(1-x-(1-2*x-3*x^2)^(1/2))/(2*x^2): GG:=series(G, x=0, 60): 1, seq(coeff(GG, x^(2*n)), n=1..23);
a := n -> hypergeom([1/2-n, -n], [2], 4);
seq(simplify(a(n)), n=0..29); # Peter Luschny, May 15 2016
MATHEMATICA
Table[SeriesCoefficient[(1-x-Sqrt[1-2*x-3*x^2])/(2*x^2), {x, 0, 2*n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 08 2012 *)
MotzkinNumber = DifferenceRoot[Function[{y, n}, {(-3n-3)*y[n] + (-2n-5)*y[n+1] + (n+4)*y[n+2] == 0, y[0] == 1, y[1] == 1}]];
Table[MotzkinNumber[2n], {n, 0, 20}] (* Jean-François Alcover, Oct 27 2021 *)
PROG
(PARI)
C(n)=binomial(2*n, n)/(n+1);
a(n)=sum(k=0, n, binomial(2*n, 2*k)*C(k));
\\ Joerg Arndt, May 04 2013
(PARI) {a(n)=polcoeff(1/x*serreverse( x * (1-x) * (1-2*x)^2 /(1 - 3*x + 3*x^2 +x^2*O(x^n)) ), n)}
for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Oct 03 2014
CROSSREFS
Sequence in context: A175895 A020087 A277378 * A378465 A374567 A246464
KEYWORD
nonn,easy
EXTENSIONS
Entry revised by N. J. A. Sloane, Nov 16 2004
STATUS
approved