login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374567
Expansion of g.f. A(x) satisfying A(x)^2 = A( x^2 + 2*x*A(x)^2 + 2*A(x)^3 ).
3
1, 2, 9, 51, 325, 2222, 15926, 118085, 898217, 6970053, 54960439, 439112322, 3547096393, 28921270773, 237704587991, 1967321998468, 16381661824340, 137144132047520, 1153655788549216, 9746264972136632, 82656795697147384, 703459159019830315, 6005956718852682504, 51426768620398474939
OFFSET
1,2
COMMENTS
Compare to: C(x)^2 = C( x^2 - 2*C(x)^3 ), where C(x) = x - C(x)^2.
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x)^2 = A( x^2 + 2*x*A(x)^2 + 2*A(x)^3 ).
(2) x = A( x - x^2 - x*G(x) ), where G(x) = x + (1/2)*(G(x)^2 + G(x^2)) is the g.f. of A001190, the Wedderburn-Etherington numbers.
(3) x^2 = A( x^2*(1 - G(x))^2 + 2*x^3 - x^4 ), where G(x) is the g.f. of A001190.
(4) x = A( x*sqrt(1 - 2*x - G(x^2)) - x^2 ), where G(x) is the g.f. of A001190.
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 9*x^3 + 51*x^4 + 325*x^5 + 2222*x^6 + 15926*x^7 + 118085*x^8 + 898217*x^9 + 6970053*x^10 + ...
where A(x)^2 = A( x^2 + 2*x*A(x)^2 + 2*A(x)^3 ).
RELATED SERIES.
Let G(x) be the g.f. of the Wedderburn-Etherington numbers, then
A( x - x^2 - x*G(x) ) = x, where G(x) = x + (1/2)*(G(x)^2 + G(x^2)) begins
G(x) = x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 11*x^7 + 23*x^8 + 46*x^9 + 98*x^10 + 207*x^11 + 451*x^12 + 983*x^13 + ... + A001190(n)*x^n + ...
A(x)^2 = x^2 + 4*x^3 + 22*x^4 + 138*x^5 + 935*x^6 + 6662*x^7 + 49191*x^8 + 373020*x^9 + 2887711*x^10 + 22727256*x^11 + ...
A(x)^3 = x^3 + 6*x^4 + 39*x^5 + 269*x^6 + 1938*x^7 + 14418*x^8 + 109932*x^9 + 854568*x^10 + 6747672*x^11 + ...
SPECIFIC VALUES.
A(t) = 1/5 at t = 0.1094430388151747748055350980742058560407673560783455...
where 1/25 = A( t^2 + 2*t/25 + 2/125 ).
A(t) = 1/6 at t = 0.1053569291935061227625330002451062383852684202941979...
where 1/36 = A( t^2 + t/18 + 1/108 ).
A(1/10) = 0.1471263013840628871589336795118257882025452972700045...
where A(1/10)^2 = A( 1/10^2 + (2/10)*A(1/10)^2 + 2*A(1/10)^3 ).
A(1/11) = 0.1237258078822115859596611191115342221543387518134407...
A(1/12) = 0.1081759735424269717469930892718654709953905803313352...
PROG
(PARI) {a(n) = my(A=[0, 1], Ax=x); for(i=1, n, A = concat(A, 0); Ax=Ser(A);
A[#A] = (1/2)*polcoeff( subst(Ax, x, x^2 + 2*x*Ax^2 + 2*Ax^3) - Ax^2, #A) ); A[n+1]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 13 2024
STATUS
approved