OFFSET
1,2
COMMENTS
In other words, a(1), a(2), a(1) XOR a(2), a(3), a(4), a(3) XOR a(4), a(1) XOR a(2) XOR a(3) XOR a(4), a(5), a(6), a(5) XOR a(6), etc. are all distinct.
In particular, all terms are distinct (but not necessarily in increasing order).
We can arrange the terms of the sequence as the leaves of a perfect infinite binary tree, the sums with e > 0 corresponding to parent nodes; each node will contain a different value and all values will appear in the tree (if n = 2^m+1 for some m > 0, then a(n) will equal the least missing value so far in the tree).
This sequence is a variant of A361144 based on the bitwise XOR operator.
LINKS
Rémy Sigrist, Table of n, a(n) for n = 1..8191
Rémy Sigrist, C++ program
EXAMPLE
The first terms (at the bottom of the tree) alongside the corresponding sums are:
103
---------------------------------
23 112
----------------- -----------------
15 24 17 97
--------- --------- --------- ---------
3 12 14 22 13 28 50 83
----- ----- ----- ----- ----- ----- ----- -----
1 2 4 8 5 11 6 16 7 10 9 21 18 32 19 64
PROG
(C++) See Links section.
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Mar 03 2023
STATUS
approved