OFFSET
0,2
COMMENTS
a(n) is also the number of words of 4n length consisting of 2n X's, n Y's and n Z's such that any initial segment of the string has at least as many X's as Y+Z's, and at least as many Y's as Z's. - Istvan Marosi, Apr 27 2014
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..558
M. Bousquet-Mélou and M. Mishna, Walks with small steps in the quarter plane, arXiv:0810.4387 [math.CO], 2008.
FORMULA
G.f.: hypergeom([1/4, 1/2, 3/4], [3/2, 2], 64*x). - Robert Israel, Aug 14 2014
D-finite with recurrence n*(n+1)*(2*n+1)*a(n) -4*(4*n-3)*(2*n-1)*(4*n-1)*a(n-1)=0. - R. J. Mathar, Jul 27 2022
MAPLE
a:= proc(n) option remember; `if`(n=0, 1,
(4*(4*n-3)*(2*n-1)*(4*n-1)*a(n-1))/(n*(n+1)*(2*n+1)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Apr 27 2014
S := proc(a) global x; series(a, x=0, 20) end:
ogf := S(int(S(x^(-1/2)*hypergeom([1/4, 3/4], [2], 64*x)), x)/(2*x^(1/2))); # Mark van Hoeij, Aug 14 2014
MATHEMATICA
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[aux[0, 0, 4 n], {n, 0, 25}]
CROSSREFS
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved