login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359800
a(n) is the least m such that the concatenation of n^2 and m is a square.
1
6, 9, 61, 9, 6, 1, 284, 516, 225, 489, 104, 4, 744, 249, 625, 3201, 444, 9, 201, 689, 4201, 416, 984, 4801, 681, 5201, 316, 996, 5801, 601, 6201, 144, 936, 6801, 449, 7201, 7401, 804, 7801, 225, 8201, 8401, 6, 8801, 9001, 9201, 9401, 324, 9801, 19344, 769, 38025
OFFSET
1,1
COMMENTS
The only one-digit terms are 1, 4, 6 and 9. Proof: Squares mod 10 are 0, 1, 4, 5, 6 and 9. Concatenation of a square and 0 is 10 times that square, which is not a square. So 0 is ruled out. Squares with last digit 5 have second last digit 2. Since no square ends in 2, 5 is also ruled out.
From Thomas Scheuerle, Jan 14 2023: (Start)
The only term with two digits is a(3) = 61.
Some terms with an odd number of digits appear infinitely often, for example, 516 for n = 8, 1352, 632958674, ... .
If a term has an even number of digits and is of the form 1+2*k*10^(d+1) with 10^d <= 2*k < 10^(d+1), then it appears only once at k = n in this sequence. Are terms with an even number of digits possible which are not of this form? (End)
FORMULA
a(n) = A071176(n^2) = A071176(A000290(n)).
From Thomas Scheuerle, Jan 13 2023: (Start)
a(A084070(n)) = 1.
a(2*A084070(n)) = 4.
a(A221874(n)) = 6.
a(A075836(n)) = 9. (End)
EXAMPLE
For n=3, 61 is the least number m such that the concatenation of 3^2 and m is a square: 961 = 31^2. So a(3) = 61.
For n=7, 284 is the least number m such that the concatenation of 7^2 and m is a square: 49284 = 222^2. So a(7) = 284.
PROG
(Python)
from math import isqrt
def a(n):
t, k = str(n*n), isqrt(10*n**2)
while not (s:=str(k*k)).startswith(t) or s[len(t)]=="0": k += 1
return int(s[len(t):])
print([a(n) for n in range(1, 53)]) # Michael S. Branicky, Jan 15 2023
(Python)
from math import isqrt
from sympy.ntheory.primetest import is_square
def A359800(n):
m = 10*n*n
if is_square(m): return 0
a = 1
while (k:=(isqrt(a*(m+1)-1)+1)**2-m*a)>=10*a:
a *= 10
return k # Chai Wah Wu, Feb 15 2023
(PARI) a(n)={my(m=n^2, b=1); while(1, m*=10; my(r=(sqrtint(m+b-1)+1)^2-m); b*=10; if(r<b, return(r)))} \\ Andrew Howroyd, Jan 13 2023
CROSSREFS
KEYWORD
nonn,look,base
AUTHOR
Mohammed Yaseen, Jan 13 2023
STATUS
approved