login
A061401
From solution to a Picard-Fuchs equation.
4
1, 6, 9, 56, -300, 3942, -48412, 639264, -8785098, 124733000, -1817441901, 27047510136, -409669978497, 6297861697848, -98055605511675, 1543575781461888, -24533312413314948, 393242952308487588, -6350814254230701986
OFFSET
1,2
LINKS
M. Aganagic, A. Klemm and C. Vafa, Disk Instantons, Mirror Symmetry and the Duality Web, Equation 6.15, p. 44.
Sean A. Irvine, Java program (github)
FORMULA
From Peter Bala, Oct 20 2024: (Start)
The g.f. A(x) = x + 6*x^2 + 9*x^3 + 56*x^4 - 300*x^5 + ... = x*series_reversion(B(x)), where B(x) = exp( Sum_{n >= 1} (-1)^n*(3*n)!/n!^3*x^n/n ). See A229451.
[x*n] (x/A(x))^n = (-1)^n * (3*n)!/n!^3 = (-1)^n * A006480(n).
The power series F(x) := (A(x)/x)^(1/6) = 1 + x - x^2 + 11*x^3 - 100*x^4 + 1101*x^5 - 13273*x^6 + 170860*x^7 - 2306884*x^8 + 32300950*x^9 - 465426461*x^10 + ... appears to have integer coefficients.
Conjecture: Let r be an integer and s a positive integer. The sequence defined by u(n) = [x^(s*n)] F(x)^(r*n) satisfies the supercongruence u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and positive integers n and r. (End)
MATHEMATICA
InverseSeries[z/Exp[6 z HypergeometricPFQ[{1, 1, 4/3, 5/3}, {2, 2, 2}, -27 z]] + O[z]^20, q] // CoefficientList[#, q]& // Rest (* Jean-François Alcover, Feb 18 2019 *)
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Jun 10 2001
EXTENSIONS
More terms from Jean-François Alcover, Feb 18 2019
STATUS
approved