login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359464
a(n) = 1 if the total number of 1-bits in the exponents of prime factorization n is even, otherwise 0.
4
1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1
OFFSET
1
FORMULA
a(n) = A059841(A064547(n)).
a(n) = 1 - A092248(A367514(n)). - Amiram Eldar, Oct 02 2024
MATHEMATICA
a[n_] := Boole@ EvenQ[Plus @@ DigitCount[FactorInteger[n][[;; , 2]], 2, 1]]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Oct 02 2024 *)
PROG
(PARI)
A064547(n) = {my(f = factor(n)[, 2]); sum(k=1, #f, hammingweight(f[k])); } \\ From A064547.
A359464(n) = !(A064547(n)%2);
(Python)
from functools import reduce
from operator import ixor
from sympy import factorint
def A359464(n): return reduce(ixor, (d.bit_count() for d in factorint(n).values()), 1)&1 # Chai Wah Wu, Jan 04 2023
CROSSREFS
Characteristic function of A000379.
Sequence in context: A374051 A354927 A173861 * A011746 A071005 A287801
KEYWORD
nonn,easy,base
AUTHOR
Antti Karttunen, Jan 02 2023
STATUS
approved