login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A011746
Expansion of (1 + x^2)/(1 + x^2 + x^5) mod 2.
19
1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1
OFFSET
0,1
LINKS
R. Gold, Characteristic linear sequences and their coset functions, J. SIAM Applied. Math., 14 (1966), 980-985.
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
FORMULA
a(n) = A088002(n) mod 2. - R. J. Mathar, May 26 2008
G.f.: (1+x^5+x^7+x^9+x^10+x^11+x^13+x^14+x^18+x^19+x^20+x^21+x^22+x^25+x^26+x^28)/(1-x^31). - Robert Israel, May 06 2018
a(n) = A011662(n-1). - R. J. Mathar, Jan 12 2024
MAPLE
series((1+x^2)/(1+x^2+x^5), x, 100) mod 2;
MATHEMATICA
Mod[CoefficientList[Series[(1+x^2)/(1+x^2+x^5), {x, 0, 80}], x], 2] (* Harvey P. Dale, Jul 19 2023 *)
PROG
(PARI) A011746_vec=Vec((1+x^2)/(1+x^2+x^5)+O(x^31))%2 \\ For illustrative purpose.
A011746(n)=bittest(377253537, n%31) \\ M. F. Hasler, Feb 17 2018
CROSSREFS
Cf. A011662.
Cf. A011747..A011751 for similar sequences and A011655 - A011745 for other binary m-sequences.
Sequence in context: A354927 A173861 A359464 * A071005 A287801 A089510
KEYWORD
nonn,easy
STATUS
approved