login
A359388
a(n) is the number of compositions of n into prime parts, with the 1st part equal to 2, the 2nd part less than or equal to 3, ..., and the k-th part less than or equal to prime(k), and so on.
1
1, 0, 1, 0, 1, 1, 1, 2, 2, 4, 5, 7, 11, 15, 24, 33, 50, 73, 105, 159, 229, 342, 501, 738, 1094, 1604, 2378, 3499, 5166, 7627, 11243, 16610, 24494, 36165, 53376, 78775, 116301, 171642, 253398, 374034, 552139, 815079, 1203166, 1776174, 2621938, 3870572, 5713798, 8434744
OFFSET
0,8
FORMULA
G.f.: Sum_{m>=0} Product_{k=1..m} Sum_{i=1..k} x^prime(i).
a(n) ~ c*A078974^n, where c = 0.094587447... .
EXAMPLE
The 7 such compositions of n = 11 are:
[ 1] (2, 2, 2, 2, 3);
[ 2] (2, 2, 2, 3, 2);
[ 3] (2, 2, 3, 2, 2);
[ 4] (2, 3, 2, 2, 2);
[ 5] (2, 2, 2, 5);
[ 6] (2, 2, 5, 2);
[ 7] (2, 3, 3, 3).
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, add(
b(n-ithprime(j), i+1), j=1..min(i, numtheory[pi](n))))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..50); # Alois P. Heinz, Dec 29 2022
MATHEMATICA
a[n_]:=Coefficient[Expand[Sum[Product[Sum[x^Prime[i], {i, k}], {k, m}], {m, 0, Floor[n/2]}]], x, n]; Array[a, 48, 0]
CROSSREFS
KEYWORD
nonn
AUTHOR
Stefano Spezia, Dec 29 2022
STATUS
approved