login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359388
a(n) is the number of compositions of n into prime parts, with the 1st part equal to 2, the 2nd part less than or equal to 3, ..., and the k-th part less than or equal to prime(k), and so on.
1
1, 0, 1, 0, 1, 1, 1, 2, 2, 4, 5, 7, 11, 15, 24, 33, 50, 73, 105, 159, 229, 342, 501, 738, 1094, 1604, 2378, 3499, 5166, 7627, 11243, 16610, 24494, 36165, 53376, 78775, 116301, 171642, 253398, 374034, 552139, 815079, 1203166, 1776174, 2621938, 3870572, 5713798, 8434744
OFFSET
0,8
FORMULA
G.f.: Sum_{m>=0} Product_{k=1..m} Sum_{i=1..k} x^prime(i).
a(n) ~ c*A078974^n, where c = 0.094587447... .
EXAMPLE
The 7 such compositions of n = 11 are:
[ 1] (2, 2, 2, 2, 3);
[ 2] (2, 2, 2, 3, 2);
[ 3] (2, 2, 3, 2, 2);
[ 4] (2, 3, 2, 2, 2);
[ 5] (2, 2, 2, 5);
[ 6] (2, 2, 5, 2);
[ 7] (2, 3, 3, 3).
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, add(
b(n-ithprime(j), i+1), j=1..min(i, numtheory[pi](n))))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..50); # Alois P. Heinz, Dec 29 2022
MATHEMATICA
a[n_]:=Coefficient[Expand[Sum[Product[Sum[x^Prime[i], {i, k}], {k, m}], {m, 0, Floor[n/2]}]], x, n]; Array[a, 48, 0]
CROSSREFS
KEYWORD
nonn
AUTHOR
Stefano Spezia, Dec 29 2022
STATUS
approved