OFFSET
1,2
COMMENTS
The corresponding integer bottom entry is 1 if k is nonprime or k if k is prime. [It is very likely that this is true, but no proof has yet been given. - Jianing Song, Jan 22 2023]
We observe that a(n) = A323306(n) for n = 1..50. But a(51) = 144 does not belong to that sequence.
Note that the bottom rational is Product_{i=1..q} d(i) ^ (binomial(q-1,i-1) * (-1)^(q-i)). - Kevin Ryde, Jan 03 2023
Given n, let 1 = M(1,1) < M(1,2) < ... < M(1,d) = n be the divisors of n, and M(i,j) = M(i-1,j+1)/M(i-1,j) for 2 <= i <= d, 1 <= j <= d+1-i. Since M(1,d+1-j) = n/M(1,j) for 1 <= j <= d, we have M(i,d+2-i-j) = M(i,j) for even i, 1 <= j <= d+1-i, and M(i,d+2-i-j) = 1/M(i,j) for odd i > 1, 1 <= j <= d+1-i. If n is a square, then d is odd, so M(d,1) = 1/M(d,1) => M(d,1) = 1. This shows that all square numbers are terms. Note that all powers of primes (A000961) are trivially terms. It seems that the squares and the powers of primes are the only terms. - Jianing Song, Jan 03 2023
EXAMPLE
36 is a term because the triangle of the elements d(i+1)/d(i) has bottom entry 1:
[1, 2, 3, 4, 6, 9, 12, 18, 36]
[2, 3/2, 4/3, 3/2, 3/2, 4/3, 3/2, 2]
[3/4, 8/9, 9/8, 1, 8/9, 9/8, 4/3]
[32/27, 81/64, 8/9, 8/9, 81/64, 32/27]
[2187/2048, 512/729, 1, 729/512, 2048/2187]
[1048576/1594323, 729/512, 729/512, 1048576/1594323]
[1162261467/536870912, 1, 536870912/1162261467]
[536870912/1162261467, 536870912/1162261467]
[1].
6 is not a term because the triangle of the elements d(i+1)/d(i) has bottom entry 16/9.
[1, 2, 3, 6]
[2, 3/2, 2]
[3/4, 4/3]
[16/9]
MATHEMATICA
Lst={}; Table[d=Divisors[n]; While[Length[d]>1, d=Ratios[d]]; If[d[[1]]==Floor[d[[1]]], AppendTo[Lst, n]], {n, 300}]; Lst
PROG
(PARI) isA359390(n) = my(L = factor(n), w = #L~, v=divisors(n), q=#v); for(i_d=1, q-1, for(i_p=1, w, L[i_p, 2] += binomial(q-1, i_d-1) * (-1)^(q-i_d) * valuation(v[i_d], L[i_p, 1]))); for(i_p=1, w, if(L[i_p, 2]<0, return(0))); return(1) \\ Jianing Song, Jan 22 2023, based on the formula provided by Kevin Ryde
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jan 03 2023
STATUS
approved