login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359392
Number of trees on n unlabeled nodes with all nodes of degree <= 7.
1
1, 1, 1, 1, 2, 3, 6, 11, 23, 46, 104, 230, 539, 1270, 3081, 7536, 18785, 47207, 120074, 307739, 795426, 2069248, 5418014, 14263084, 37742929, 100331646, 267854040, 717863832, 1930888297, 5210968114, 14106844554
OFFSET
0,5
LINKS
R. Otter, The number of trees, Ann. of Math. (2) 49 (1948), 583-599 discusses asymptotics.
E. M. Rains and N. J. A. Sloane, On Cayley's Enumeration of Alkanes (or 4-Valent Trees), J. Integer Sequences, Vol. 2 (1999), Article 99.1.1.
FORMULA
G.f.: B(x) - cycle_index(S2,-B(x)) + x * cycle_index(S7,B(x)) = B(x) - (B(x)^2 - B(x^2)) / 2 + x * (B(x)^7 + 21 B(x)^5 B(x^2) + 105 B(x)^3 B(x^2)^2 + 105 B(x) B(x^2)^3 + 70 B(x)^4 B(x^3) + 420 B(x)^2 B(x^2) B(x^3) + 210 B(x^2)^2 B(x^3) + 280 B(x) B(x^3)^2 + 210 B(x)^3 B(x^4) + 630 B(x) B(x^2) B(x^4) + 420 B(x^3) B(x^4) + 504 B(x)^2 B(x^5) + 504 B(x^2) B(x^5) + 840 B(x) B(x^6) + 720 B(x^7)) / 5040, where B(x) = 1 + x * cycle_index(S6,B(x)) = 1 + x * (B(x)^6 + 15*B(x)^4*B(x^2) + 45*B(x)^2*B(x^2)^2 + 15*B(x^2)^3 + 40*B(x)^3*B(x^3) + 120*B(x)*B(x^2)*B(x^3) + 40*B(x^3)^2 + 90*B(x)^2*B(x^4) + 90*B(x^2)*B(x^4) + 144*B(x)*B(x^5) + 120*B(x^6)) / 720 is the generating function for A036722. - Robert A. Russell, Jan 19 2023
MATHEMATICA
n = 30; (* algorithm from Rains and Sloane *)
m = 7; (* maximum degree of node *)
CIm[f_, h_, x_] = SymmetricGroupIndex[m-1, x] /. x[i_] -> f[h, x^i];
CI[f_, h_, x_] = SymmetricGroupIndex[m, x] /. x[i_] -> f[h, x^i];
T[-1, z_] := 1; T[h_, z_] := T[h, z] = Table[z^k, {k, 0, n}] .
Take[CoefficientList[z^(n+1) + 1 + CIm[T, h-1, z] z, z], n+1];
ReplacePart[Sum[Take[CoefficientList[z^(n+1) + CI[T, h-1, z] z - CI[T, h-2, z] z - (T[h-1, z] - T[h-2, z]) (T[h-1, z] - 1), z], n+1], {h, 1, n/2}] + PadRight[{0, 1}, n+1] + Sum[Take[CoefficientList[z^(n+1) + (T[h, z]
- T[h-1, z])^2/2 + (T[h, z^2] - T[h-1, z^2])/2, z], n+1], {h, 0, n/2}],
1->1] (* end of original program *)
b[n_, i_, t_, k_] := b[n, i, t, k] = If[i<1, 0, Sum[Binomial[b[i-1, i-1,
k, k] + j-1, j]* b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]];
b[0, i_, t_, k_] = 1; m = 6; (* m = maximum children *) n = 40;
gf[x_] = 1 + Sum[b[j-1, j-1, m, m]x^j, {j, 1, n}]; (* G.f. for A036722 *)
ci[x_] = SymmetricGroupIndex[m+1, x] /. x[i_] -> gf[x^i];
CoefficientList[Normal[Series[gf[x] - (gf[x]^2 - gf[x^2])/2 + x ci[x],
{x, 0, n}]], x] (* Robert A. Russell, Jan 19 2023 *)
CROSSREFS
Column k=7 of A144528; A036722 (rooted trees).
Sequence in context: A036656 A001190 A274937 * A199142 A090344 A277795
KEYWORD
nonn
AUTHOR
Robert A. Russell, Dec 29 2022
STATUS
approved