login
A027069
a(n) = diagonal sum of left-justified array T given by A027052.
2
1, 1, 1, 2, 2, 4, 5, 7, 11, 14, 22, 32, 43, 67, 97, 134, 206, 298, 419, 637, 923, 1312, 1978, 2872, 4111, 6161, 8961, 12888, 19232, 28010, 40423, 60129, 87665, 126840, 188216, 274634, 398151, 589689, 861001, 1250210, 1848840, 2700900, 3926839, 5799949, 8476579
OFFSET
0,4
LINKS
FORMULA
a(n) = Sum_{k=0..n} A027052(n - k, k). - Sean A. Irvine, Oct 22 2019
MAPLE
T:= proc(n, k) option remember;
if k<0 or k>2*n then 0
elif k=0 or k=2 or k=2*n then 1
elif k=1 then 0
else add(T(n-1, k-j), j=1..3)
fi
end:
seq( add(T(n-k, k), k=0..n), n=0..50); # G. C. Greubel, Nov 06 2019
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3} ]]]]; Table[Sum[T[n-k, k], {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Nov 06 2019 *)
PROG
(Sage)
@CachedFunction
def T(n, k):
if (k<0 or k>2*n): return 0
elif (k==0 or k==2 or k==2*n): return 1
elif (k==1): return 0
else: return sum(T(n-1, k-j) for j in (1..3))
[sum(T(n-k, k) for k in (0..n)) for n in (0..50)] # G. C. Greubel, Nov 06 2019
CROSSREFS
Sequence in context: A034398 A277062 A355638 * A238494 A359388 A325550
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, Oct 22 2019
STATUS
approved