login
A358737
a(n) is the greatest prime number dividing A359098(n).
2
101, 139, 53, 557, 223, 31, 1117, 43, 373, 59, 17, 1123, 281, 5, 563, 23, 47, 1129, 29, 283, 103, 7, 227, 71, 379, 569, 67, 163, 571, 127, 13, 229, 191, 37, 41, 383, 1151, 3, 1153, 577, 11, 17, 89, 193, 61, 43, 83, 1163, 97, 233, 53, 389, 73, 167, 1171, 293
OFFSET
1,1
COMMENTS
Bugeaud proves that a(n) tends to infinity as n tends to infinity.
LINKS
Yann Bugeaud, On the digital representation of integers with bounded prime factors, Osaka J. Math. 55 (2018), 315-324; arXiv:1609.07926 [math.NT], 2016.
FORMULA
a(n) = A006530(A359098(n)).
EXAMPLE
For n = 2:
- A359098(2) = 1112 = 2^3 * 139,
- hence a(2) = 139.
MATHEMATICA
Map[FactorInteger[#][[-1, 1]] &, Select[Range[1111, 1172], And[Mod[#, 10] != 0, Total@ Most@ DigitCount[#] == 4] &]] (* Michael De Vlieger, Jan 04 2023 *)
PROG
(PARI) { for (n=1, 1172, if (n%10 && #select(d->d, digits(n))==4, f = factor(n); print1 (f[#f~, 1]", "))) }
(Python)
from itertools import count, islice
from sympy import primefactors
def A358737_gen(): # generator of terms
for a in count(3):
a10 = 10**a
for ad in range(1, 10):
for b in range(2, a):
b10 = 10**b
for bd in range(1, 10):
for c in range(1, b):
c10 = 10**c
yield from (max(primefactors(ad*a10+bd*b10+cd*c10+dd)) for cd in range(1, 10) for dd in range(1, 10))
A358737_list = list(islice(A358737_gen(), 30)) # Chai Wah Wu, Jan 04 2023
CROSSREFS
Sequence in context: A162463 A035790 A139489 * A106994 A050672 A122531
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Jan 04 2023
STATUS
approved