OFFSET
1,1
COMMENTS
Bugeaud proves that a(n) tends to infinity as n tends to infinity.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..10000
Yann Bugeaud, On the digital representation of integers with bounded prime factors, Osaka J. Math. 55 (2018), 315-324; arXiv:1609.07926 [math.NT], 2016.
EXAMPLE
MATHEMATICA
Map[FactorInteger[#][[-1, 1]] &, Select[Range[1111, 1172], And[Mod[#, 10] != 0, Total@ Most@ DigitCount[#] == 4] &]] (* Michael De Vlieger, Jan 04 2023 *)
PROG
(PARI) { for (n=1, 1172, if (n%10 && #select(d->d, digits(n))==4, f = factor(n); print1 (f[#f~, 1]", "))) }
(Python)
from itertools import count, islice
from sympy import primefactors
def A358737_gen(): # generator of terms
for a in count(3):
a10 = 10**a
for ad in range(1, 10):
for b in range(2, a):
b10 = 10**b
for bd in range(1, 10):
for c in range(1, b):
c10 = 10**c
yield from (max(primefactors(ad*a10+bd*b10+cd*c10+dd)) for cd in range(1, 10) for dd in range(1, 10))
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Jan 04 2023
STATUS
approved