%I #43 Jan 04 2023 14:37:16
%S 101,139,53,557,223,31,1117,43,373,59,17,1123,281,5,563,23,47,1129,29,
%T 283,103,7,227,71,379,569,67,163,571,127,13,229,191,37,41,383,1151,3,
%U 1153,577,11,17,89,193,61,43,83,1163,97,233,53,389,73,167,1171,293
%N a(n) is the greatest prime number dividing A359098(n).
%C Bugeaud proves that a(n) tends to infinity as n tends to infinity.
%H Michael De Vlieger, <a href="/A358737/b358737.txt">Table of n, a(n) for n = 1..10000</a>
%H Yann Bugeaud, <a href="https://arxiv.org/abs/1609.07926">On the digital representation of integers with bounded prime factors</a>, Osaka J. Math. 55 (2018), 315-324; arXiv:1609.07926 [math.NT], 2016.
%F a(n) = A006530(A359098(n)).
%e For n = 2:
%e - A359098(2) = 1112 = 2^3 * 139,
%e - hence a(2) = 139.
%t Map[FactorInteger[#][[-1, 1]] &, Select[Range[1111, 1172], And[Mod[#, 10] != 0, Total@ Most@ DigitCount[#] == 4] &]] (* _Michael De Vlieger_, Jan 04 2023 *)
%o (PARI) { for (n=1, 1172, if (n%10 && #select(d->d, digits(n))==4, f = factor(n); print1 (f[#f~, 1]", "))) }
%o (Python)
%o from itertools import count, islice
%o from sympy import primefactors
%o def A358737_gen(): # generator of terms
%o for a in count(3):
%o a10 = 10**a
%o for ad in range(1,10):
%o for b in range(2,a):
%o b10 = 10**b
%o for bd in range(1,10):
%o for c in range(1,b):
%o c10 = 10**c
%o yield from (max(primefactors(ad*a10+bd*b10+cd*c10+dd)) for cd in range(1,10) for dd in range(1,10))
%o A358737_list = list(islice(A358737_gen(),30)) # _Chai Wah Wu_, Jan 04 2023
%Y Cf. A006530, A359098.
%K nonn,base
%O 1,1
%A _Rémy Sigrist_, Jan 04 2023