login
A162463
Numbers k which are concatenations k=x//y such that x^2 + y^2 is a multiple of k.
0
101, 137, 202, 274, 292, 303, 404, 505, 606, 657, 707, 808, 909, 1233, 2466, 3577, 3699, 8833, 9901, 10100, 16577, 17666, 20200, 26499, 30300, 40400, 49457, 50500, 60600, 70700, 80800, 90900, 99937, 100010, 110011, 120012, 130013, 140014, 150015, 160016, 170017
OFFSET
1,1
COMMENTS
Concatenations with x=0 or y=0 or that allow y with leading zeros are not taken into account.
EXAMPLE
274 is a term because 2^2 + 74^2 = 4 + 5476 = 5480 = 20*274.
2466 is a term because 24^2 + 66^2 = 576+4356 = 4932 = 2*2466.
110011 is a term because 1100^2 + 11^2 = 11*110011.
MAPLE
Lton := proc(L) add(op(i, L)*10^(i-1), i=1..nops(L)) ; end:
isA162463 := proc(n) dgs := convert(n, base, 10) ; for spl from 1 to nops(dgs)-1 do y := Lton([op(1..spl, dgs)]) ; x := Lton([op(spl+1..nops(dgs), dgs)]) ; if x<> 0 and y <> 0 and op(spl, dgs) <> 0 and (x^2+y^2) mod n = 0 then RETURN(true) ; fi; od: RETURN(false) ; end:
for n from 1 to 1000000 do if isA162463(n) then printf("%d, ", n) ; fi; od: # R. J. Mathar, Jul 10 2009
CROSSREFS
Sequence in context: A158089 A104946 A272075 * A035790 A139489 A358737
KEYWORD
nonn,base
AUTHOR
Claudio Meller, Jul 04 2009
EXTENSIONS
Missing terms inserted by R. J. Mathar, Jul 10 2009
STATUS
approved