login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162463
Numbers k which are concatenations k=x//y such that x^2 + y^2 is a multiple of k.
0
101, 137, 202, 274, 292, 303, 404, 505, 606, 657, 707, 808, 909, 1233, 2466, 3577, 3699, 8833, 9901, 10100, 16577, 17666, 20200, 26499, 30300, 40400, 49457, 50500, 60600, 70700, 80800, 90900, 99937, 100010, 110011, 120012, 130013, 140014, 150015, 160016, 170017
OFFSET
1,1
COMMENTS
Concatenations with x=0 or y=0 or that allow y with leading zeros are not taken into account.
EXAMPLE
274 is a term because 2^2 + 74^2 = 4 + 5476 = 5480 = 20*274.
2466 is a term because 24^2 + 66^2 = 576+4356 = 4932 = 2*2466.
110011 is a term because 1100^2 + 11^2 = 11*110011.
MAPLE
Lton := proc(L) add(op(i, L)*10^(i-1), i=1..nops(L)) ; end:
isA162463 := proc(n) dgs := convert(n, base, 10) ; for spl from 1 to nops(dgs)-1 do y := Lton([op(1..spl, dgs)]) ; x := Lton([op(spl+1..nops(dgs), dgs)]) ; if x<> 0 and y <> 0 and op(spl, dgs) <> 0 and (x^2+y^2) mod n = 0 then RETURN(true) ; fi; od: RETURN(false) ; end:
for n from 1 to 1000000 do if isA162463(n) then printf("%d, ", n) ; fi; od: # R. J. Mathar, Jul 10 2009
CROSSREFS
Sequence in context: A158089 A104946 A272075 * A035790 A139489 A358737
KEYWORD
nonn,base
AUTHOR
Claudio Meller, Jul 04 2009
EXTENSIONS
Missing terms inserted by R. J. Mathar, Jul 10 2009
STATUS
approved