login
A358524
Binary encoding of balanced ordered rooted trees (counted by A007059).
3
0, 2, 10, 12, 42, 52, 56, 170, 204, 212, 232, 240, 682, 820, 844, 852, 920, 936, 976, 992, 2730, 3276, 3284, 3380, 3404, 3412, 3640, 3688, 3736, 3752, 3888, 3920, 4000, 4032, 10922, 13108, 13132, 13140, 13516, 13524, 13620, 13644, 13652, 14568, 14744, 14760
OFFSET
1,2
COMMENTS
An ordered tree is balanced if all leaves are the same distance from the root.
The binary encoding of an ordered tree (see A014486) is obtained by replacing the internal left and right brackets with 0's and 1's, thus forming a binary number.
EXAMPLE
The terms together with their corresponding trees begin:
0: o
2: (o)
10: (oo)
12: ((o))
42: (ooo)
52: ((oo))
56: (((o)))
170: (oooo)
204: ((o)(o))
212: ((ooo))
232: (((oo)))
240: ((((o))))
682: (ooooo)
820: ((o)(oo))
844: ((oo)(o))
852: ((oooo))
920: (((o)(o)))
936: (((ooo)))
976: ((((oo))))
992: (((((o)))))
MATHEMATICA
binbalQ[n_]:=n==0||Count[IntegerDigits[n, 2], 0]==Count[IntegerDigits[n, 2], 1]&&And@@Table[Count[Take[IntegerDigits[n, 2], k], 0]<=Count[Take[IntegerDigits[n, 2], k], 1], {k, IntegerLength[n, 2]}];
bint[n_]:=If[n==0, {}, ToExpression[StringReplace[StringReplace[ToString[IntegerDigits[n, 2]/.{1->"{", 0->"}"}], ", "->""], "} {"->"}, {"]]]
Select[Range[0, 1000], binbalQ[#]&&SameQ@@Length/@Position[bint[#], {}]&]
CROSSREFS
These trees are counted by A007059.
This is a subset of A014486.
The version for binary trees is A057122.
The unordered version is A184155, counted by A048816.
Another ranking of balanced ordered trees is A358459.
A000108 counts ordered rooted trees, unordered A000081.
A358453 counts transitive ordered trees, unordered A290689.
Sequence in context: A209641 A209642 A061855 * A144145 A075170 A039571
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 21 2022
STATUS
approved