|
|
A358527
|
|
Position of p in the factorization (without multiplicity) of 2^(p-1)-1, where p is the n-th odd prime.
|
|
3
|
|
|
1, 2, 2, 2, 4, 3, 3, 2, 3, 4, 6, 6, 3, 2, 3, 2, 8, 4, 5, 8, 3, 2, 5, 6, 6, 3, 2, 8, 6, 6, 4, 4, 4, 3, 5, 7, 5, 2, 3, 2, 14, 4, 7, 7, 8, 9, 3, 2, 5, 5, 4, 12, 4, 4, 2, 3, 8, 7, 12, 3, 3, 6, 4, 10, 3, 9, 13, 2, 7, 7, 2, 3, 5, 8, 2, 3, 13, 10, 10, 4, 19, 4, 13, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Amiram Eldar, Table of n, a(n) for n = 1..196
|
|
EXAMPLE
|
a(19) = 5 because the 19th odd prime is 71 and 71 is the 5th largest distinct prime factor of 2^(71-1)-1 = 1180591620717411303423 = 3 * 11 * 31 * 43 * 71 * 127 * 281 * 86171 * 122921.
|
|
MATHEMATICA
|
Array[FirstPosition[FactorInteger[2^(# - 1) - 1], #][[1]] &[Prime[# + 1]] &, 50] (* Michael De Vlieger, Nov 27 2022 *)
|
|
PROG
|
(PARI) a(n) = my(p=prime(n+1), v=factor(2^(p-1)-1)[, 1]); vecsearch(v, p); \\ Michel Marcus, Nov 28 2022
|
|
CROSSREFS
|
Cf. A065091, A098102, A358699.
Sequence in context: A194319 A208609 A249030 * A257126 A050493 A331851
Adjacent sequences: A358524 A358525 A358526 * A358528 A358529 A358530
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
G. L. Honaker, Jr., Nov 20 2022
|
|
EXTENSIONS
|
More terms from Amiram Eldar, Nov 23 2022
|
|
STATUS
|
approved
|
|
|
|