login
A358455
Number of recursively anti-transitive ordered rooted trees with n nodes.
4
1, 1, 2, 4, 10, 26, 72, 206, 608, 1830, 5612, 17442, 54866, 174252, 558072, 1800098
OFFSET
1,3
COMMENTS
We define an unlabeled ordered rooted tree to be recursively anti-transitive if no branch of a branch of a subtree is a branch of the same subtree farther to the left.
EXAMPLE
The a(1) = 1 through a(5) = 10 trees:
o (o) (oo) (ooo) (oooo)
((o)) ((o)o) ((o)oo)
((oo)) ((oo)o)
(((o))) ((ooo))
(((o))o)
(((o)o))
(((oo)))
((o)(o))
(o((o)))
((((o))))
MATHEMATICA
aot[n_]:=If[n==1, {{}}, Join@@Table[Tuples[aot/@c], {c, Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[Select[aot[n], FreeQ[#, {___, x_, ___, {___, x_, ___}, ___}]&]], {n, 10}]
CROSSREFS
The unordered version is A324765, ranked by A324766.
The undirected version is A358456.
A000108 counts ordered rooted trees, unordered A000081.
A306844 counts anti-transitive rooted trees.
A358453 counts transitive ordered trees, unordered A290689.
Sequence in context: A154835 A049145 A102407 * A356832 A148097 A148098
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Nov 18 2022
STATUS
approved