%I #7 Nov 18 2022 21:53:03
%S 1,1,2,4,10,26,72,206,608,1830,5612,17442,54866,174252,558072,1800098
%N Number of recursively anti-transitive ordered rooted trees with n nodes.
%C We define an unlabeled ordered rooted tree to be recursively anti-transitive if no branch of a branch of a subtree is a branch of the same subtree farther to the left.
%e The a(1) = 1 through a(5) = 10 trees:
%e o (o) (oo) (ooo) (oooo)
%e ((o)) ((o)o) ((o)oo)
%e ((oo)) ((oo)o)
%e (((o))) ((ooo))
%e (((o))o)
%e (((o)o))
%e (((oo)))
%e ((o)(o))
%e (o((o)))
%e ((((o))))
%t aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
%t Table[Length[Select[aot[n],FreeQ[#,{___,x_,___,{___,x_,___},___}]&]],{n,10}]
%Y The unordered version is A324765, ranked by A324766.
%Y The undirected version is A358456.
%Y A000108 counts ordered rooted trees, unordered A000081.
%Y A306844 counts anti-transitive rooted trees.
%Y A358453 counts transitive ordered trees, unordered A290689.
%Y Cf. A318185, A324695, A324751, A324756, A324758, A324764, A324767, A324768, A324838, A324840, A324844.
%K nonn,more
%O 1,3
%A _Gus Wiseman_, Nov 18 2022