login
A358260
a(n) is the number of infinitary square divisors of n.
7
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
OFFSET
1,4
COMMENTS
First differs from A007424 at n = 36, from A323308 at n = 64, and from A278908 and A307848 at n = 128.
LINKS
FORMULA
Multiplicative with a(p^e) = 2^A000120(e) if e is even, and 2^A000120(e-1) if e is odd.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} ((1-1/p) * Sum_{k>=1} a(p^k)/p^k) = 1.55454884667440993654... .
MATHEMATICA
f[p_, e_] := 2^DigitCount[If[OddQ[e], e - 1, e], 2, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i=1, #f~, 2^hammingweight(if(f[i, 2]%2, f[i, 2]-1, f[i, 2])))};
CROSSREFS
Similar sequences: A046951, A056624, A056626.
Sequences with the same initial terms: A007424, A278908, A307848, A323308.
Sequence in context: A365549 A278908 A307848 * A368978 A255326 A085424
KEYWORD
nonn,mult
AUTHOR
Amiram Eldar, Nov 06 2022
STATUS
approved