

A357945


Numbers k which are not square but D = (b+c)^2  k is square, where b = floor(sqrt(k)) and c = k  b^2.


0



5, 13, 28, 65, 69, 76, 125, 128, 189, 205, 300, 305, 325, 352, 413, 425, 532, 533, 544, 565, 693, 725, 793, 828, 860, 1025, 1036, 1045, 1105, 1141, 1248, 1449, 1469, 1504, 1525, 1708, 1885, 1917, 1965, 2125, 2240, 2353, 2380, 2501, 2533, 2548, 2812, 2816, 2825, 2829, 2844, 2873, 2893
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

All composite terms are included in A177713.
Terms are the difference of two perfect squares k = (b+c)^2  d^2, where d = sqrt(D), and so if composite are factorizable by Fermat's method k = ((b+c) + d) * ((b+c)  d).


LINKS



FORMULA



EXAMPLE

8525 is a term since it's not square and b = floor(sqrt(k)) = 92 and c = k  b^2 = 61 gives D = (b+c)^2  k = 14884 which is square (122^2).


PROG

(Python)
from gmpy2 import *
if not is_square(n):
b, c = isqrt_rem(n)
return is_square(c*(2*b+c1))
else:
return False
(PARI) isok(k) = if (!issquare(k), my(b=sqrtint(k), c=kb^2); issquare((b+c)^2  k)); \\ Michel Marcus, Oct 23 2022


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



