login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357843
Numerators of the partial alternating sums of the reciprocals of the number of divisors function (A000005).
2
1, 1, 1, 2, 7, 11, 17, 7, 3, 5, 7, 19, 25, 11, 25, 113, 143, 133, 163, 51, 14, 51, 61, 117, 391, 361, 391, 371, 431, 52, 119, 19, 81, 19, 81, 709, 799, 377, 799, 1553, 1733, 211, 467, 226, 467, 889, 979, 961, 1021, 991, 259, 503, 274, 2147, 2237, 274, 1141, 274
OFFSET
1,4
LINKS
László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1.
FORMULA
a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/d(k)), where d(k) = A000005(k).
a(n)/A357844(n) ~ n * Sum_{k=1..N} B_k/log(n)^(k-1/2) + O(n/log(n)^(N+1/2)), where B_k are constants, and in particular B_1 = (1/log(2) - 1) * (1/sqrt(Pi)) * Product_{p prime} sqrt(p^2-p) * log(p/(p-1)) (Tóth, 2017).
EXAMPLE
Fractions begin with 1, 1/2, 1, 2/3, 7/6, 11/12, 17/12, 7/6, 3/2, 5/4, 7/4, 19/12, ...
MATHEMATICA
Numerator[Accumulate[Array[(-1)^(# + 1)/DivisorSigma[0, #] &, 60]]]
PROG
(PARI) lista(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / numdiv(k); print1(numerator(s), ", "))};
(Python)
from fractions import Fraction
from sympy import divisor_count
def A357843(n): return sum(Fraction(1 if k&1 else -1, divisor_count(k)) for k in range(1, n+1)).numerator # Chai Wah Wu, Oct 16 2022
CROSSREFS
Cf. A000005, A307704, A357844 (denominators).
Similar sequences: A104528, A211177, A357820.
Sequence in context: A190750 A049635 A079140 * A176897 A362770 A166005
KEYWORD
nonn,frac
AUTHOR
Amiram Eldar, Oct 16 2022
STATUS
approved