login
A357841
Smith numbers (A006753) for which the arithmetic derivative (A003415) is also a Smith number.
0
4, 27, 85, 121, 166, 265, 517, 526, 634, 706, 778, 913, 985, 1633, 1822, 1966, 2173, 2218, 2326, 2434, 2605, 2785, 3505, 3802, 3865, 3973, 4306, 4369, 4765, 4918, 5248, 5674, 5818, 5926, 6178, 6385, 7186, 7726, 8185, 8257, 8653, 9193, 9301, 10201, 10489, 10606
OFFSET
1,1
EXAMPLE
4 = A006753(1) and 4' = 4, so 4 is a term.
27 = A006753(3) and 27' = 27, so 27 is a term.
85 = A006753(5) and 85' = 22 = A006753(2), so 85 is a term.
MATHEMATICA
digsum[n_] := Total@IntegerDigits[n]; smithQ[n_] := CompositeQ[n] && Plus @@ (Last[#]*digsum[First@#] & /@ FactorInteger[n]) == digsum[n]; d[0] = d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[10^4], smithQ[#] && smithQ[d[#]] &] (* Amiram Eldar, Oct 21 2022 *)
PROG
(Magma) sm:=func<n| not IsPrime(n) and (&+Intseq(n) eq &+[ Factorisation(n)[i][2]* &+Intseq(Factorisation(n)[i][1]) : i in [1..#PrimeDivisors(n)]])>; f:=func<h |h le 1 select 0 else h*(&+[Factorisation(h)[i][2] / Factorisation(h)[i][1]: i in [1..#Factorisation(h)]])>; [n:n in [2..10700]|sm(n) and sm(Floor(f(n)))];
CROSSREFS
Sequence in context: A015238 A298987 A070600 * A100488 A220019 A225902
KEYWORD
nonn,base
AUTHOR
Marius A. Burtea, Oct 20 2022
STATUS
approved