login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104528
Numerator of Sum_{k=1..n} 1/tau(k), where tau(k) is the number of divisors function.
5
1, 3, 2, 7, 17, 37, 43, 23, 25, 53, 59, 61, 67, 35, 73, 377, 407, 139, 149, 457, 118, 487, 517, 1049, 363, 373, 383, 1169, 1229, 311, 163, 331, 677, 173, 707, 2141, 2231, 569, 2321, 4687, 4867, 614, 1273, 644, 1303, 2651, 2741, 2759, 2819, 2849, 1447, 731
OFFSET
1,2
LINKS
B. M. Wilson, Proofs of some formulae enunciated by Ramanujan, Proceedings of the London Mathematical Society, Volume s2-21, Issue 1 (1923), pp. 235-255.
FORMULA
Sum_{k=1..n} a(k)/A104529(k) ~ (n/sqrt(log(n)) * (c_0 + c_1/log(n) + .... + c_k/log(n)^k + O(1/log(n)^(k+1))), where c_0 = (1/sqrt(Pi)) * Product_{p prime} sqrt(p^2-p) * log(p/(p-1)) (Ramanujan, 1916; Wilson, 1923). - Amiram Eldar, Oct 14 2022
EXAMPLE
Fractions begin with 1, 3/2, 2, 7/3, 17/6, 37/12, 43/12, 23/6, 25/6, 53/12, 59/12, 61/12, ...
a(4) = 7 because 1/tau(1) + 1/tau(2) + 1/tau(3) + 1/tau(4) = 1/1 + 1/2 + 1/2 + 1/3 = 7/3.
MAPLE
with(numtheory): a:=n->numer(sum(1/tau(k), k=1..n)): seq(a(n), n=1..57);
MATHEMATICA
Numerator[Accumulate[1/Array[DivisorSigma[0, #] &, 50]]] (* Amiram Eldar, Oct 14 2022 *)
CROSSREFS
Cf. A000005, A104529 (denominators).
Sequence in context: A363399 A049970 A344211 * A177115 A316087 A196537
KEYWORD
frac,nonn
AUTHOR
Emeric Deutsch, Mar 12 2005
STATUS
approved