login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104526
Numerator of sum(1/(phi(k)sigma(k)),k=1..n), where phi(k) is the totient function and sigma(k) is the sum of the divisors function.
2
1, 4, 35, 257, 11, 271, 183, 2773, 36329, 109897, 110443, 27757, 55709, 37291, 49873, 1549703, 13975537, 14010257, 2806565, 2811401, 5631265, 9400487, 103518197, 103642321, 103738417, 311569891, 311818139, 312084119, 312296903, 312607213
OFFSET
1,2
COMMENTS
The first 5 sums are: 1,4/3,35/24,257/168,11/7.
LINKS
EXAMPLE
a(3)=35 because phi(1)*sigma(1)+phi(2)*sigma(2)+phi(3)*sigma(3)=1/(1*1)+1/(1*3)+1/(2*4)=35/24.
MAPLE
with(numtheory): a:=n->numer(sum(1/phi(k)/sigma(k), k=1..n)): seq(a(n), n=1..35);
MATHEMATICA
Accumulate[Table[1/(EulerPhi[n]DivisorSigma[1, n]), {n, 30}]]//Numerator (* Harvey P. Dale, Jun 19 2023 *)
CROSSREFS
Sequence in context: A220256 A220320 A261186 * A174436 A145607 A188527
KEYWORD
frac,nonn
AUTHOR
Emeric Deutsch, Mar 12 2005
STATUS
approved