login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261186
a(n) = binomial(3*n-2,n+1).
0
4, 35, 252, 1716, 11440, 75582, 497420, 3268760, 21474180, 141120525, 927983760, 6107086800, 40225345056, 265182149218, 1749695026860, 11554258485616, 76360380541900, 505037289962205, 3342649210440540, 22138745874816900, 146721427591999680
OFFSET
2,1
FORMULA
G.f.: (3^(5/2) * cos(asin((3^(3/2) * sqrt(x))/2)/3) * x^(3/2))/(32*sin(asin((3^(3/2) * sqrt(x))/2)/3)^5 * sqrt(1-(27*x)/4)) - 1/x + 2.
+2*(n-2)*(2*n-3)*(n+1)*a(n) -3*(n-1)*(3*n-4)*(3*n-2)*a(n-1)=0. - R. J. Mathar, Jun 07 2016
MATHEMATICA
Table[Binomial[3 n - 2, n + 1], {n, 2, 25}] (* Vincenzo Librandi, Aug 12 2015 *)
PROG
(Maxima) taylor((3^(5/2)*cos(asin((3^(3/2)*sqrt(x))/2)/3)*x^(3/2))/(32*sin(asin((3^(3/2)*sqrt(x))/2)/3)^5*sqrt(1-(27*x)/4))-1/x+2, x, 0, 10);
(PARI) vector(30, n, n++; binomial(3*n-2, n+1)) \\ Michel Marcus, Aug 11 2015
(Magma) [Binomial(3*n-2, n+1): n in [2..30]]; // Vincenzo Librandi, Aug 12 2015
CROSSREFS
Sequence in context: A128811 A220256 A220320 * A104526 A174436 A145607
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Aug 11 2015
STATUS
approved