login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357818
Numerators of the partial sums of the reciprocals of the Dedekind psi function (A001615).
1
1, 4, 19, 7, 23, 2, 17, 53, 55, 169, 175, 89, 641, 1303, 331, 1345, 1373, 1387, 7061, 2377, 9613, 29119, 29539, 29749, 6017, 6065, 6121, 6163, 31151, 31291, 15803, 3977, 16013, 48319, 24317, 12211, 233899, 58774, 472757, 59344, 119543, 1918673, 21249043, 21336823
OFFSET
1,2
LINKS
Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 100, p. 169.
V. Sita Ramaiah and D. Suryanarayana, Sums of reciprocals of some multiplicative functions, Mathematical Journal of Okayama University, Vol. 21, No. 2 (1979), pp. 155-164.
László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1.
FORMULA
a(n) = numerator(Sum_{k=1..n} 1/psi(k)).
a(n)/A357819(n) ~ C * (log(n) + gamma + D) + O(log(n)^(2/3) * log(log(n))^(4/3) / n), where C = Product_{p prime} (1 - 1/(p*(p+1))) (A065463), and D = Sum_{p prime} log(p)/(p^2+p-1) (A335707) (Sita Ramaiah and Suryanarayana, 1979; Tóth, 2017).
EXAMPLE
Fractions begin with 1, 4/3, 19/12, 7/4, 23/12, 2, 17/8, 53/24, 55/24, 169/72, 175/72, 89/36, ...
MATHEMATICA
psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); psi[1] = 1; Numerator[Accumulate[1/Array[psi[#] &, 50]]]
PROG
(PARI) f(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615
a(n) = numerator(sum(k=1, n, 1/f(k))); \\ Michel Marcus, Oct 15 2022
CROSSREFS
Cf. A001615, A173290, A357819 (denominators).
Similar sequences: A028415, A104528, A212717.
Sequence in context: A222323 A012496 A024572 * A009267 A009275 A362249
KEYWORD
nonn,frac
AUTHOR
Amiram Eldar, Oct 14 2022
STATUS
approved