Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Oct 15 2022 07:17:25
%S 1,4,19,7,23,2,17,53,55,169,175,89,641,1303,331,1345,1373,1387,7061,
%T 2377,9613,29119,29539,29749,6017,6065,6121,6163,31151,31291,15803,
%U 3977,16013,48319,24317,12211,233899,58774,472757,59344,119543,1918673,21249043,21336823
%N Numerators of the partial sums of the reciprocals of the Dedekind psi function (A001615).
%H Steven R. Finch, <a href="https://doi.org/10.1017/9781316997741">Mathematical Constants II</a>, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 100, p. 169.
%H V. Sita Ramaiah and D. Suryanarayana, <a href="http://doi.org/10.18926/mjou/33820">Sums of reciprocals of some multiplicative functions</a>, Mathematical Journal of Okayama University, Vol. 21, No. 2 (1979), pp. 155-164.
%H László Tóth, <a href="https://www.emis.de/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1.
%F a(n) = numerator(Sum_{k=1..n} 1/psi(k)).
%F a(n)/A357819(n) ~ C * (log(n) + gamma + D) + O(log(n)^(2/3) * log(log(n))^(4/3) / n), where C = Product_{p prime} (1 - 1/(p*(p+1))) (A065463), and D = Sum_{p prime} log(p)/(p^2+p-1) (A335707) (Sita Ramaiah and Suryanarayana, 1979; Tóth, 2017).
%e Fractions begin with 1, 4/3, 19/12, 7/4, 23/12, 2, 17/8, 53/24, 55/24, 169/72, 175/72, 89/36, ...
%t psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); psi[1] = 1; Numerator[Accumulate[1/Array[psi[#] &, 50]]]
%o (PARI) f(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615
%o a(n) = numerator(sum(k=1, n, 1/f(k))); \\ _Michel Marcus_, Oct 15 2022
%Y Cf. A001615, A173290, A357819 (denominators).
%Y Cf. A001620, A065463, A335707.
%Y Similar sequences: A028415, A104528, A212717.
%K nonn,frac
%O 1,2
%A _Amiram Eldar_, Oct 14 2022