login
A357821
Denominators of the partial alternating sums of the reciprocals of the Dedekind psi function (A001615).
3
1, 3, 12, 4, 12, 6, 24, 8, 24, 72, 72, 18, 63, 504, 63, 504, 168, 504, 2520, 2520, 10080, 1120, 3360, 3360, 672, 224, 2016, 2016, 10080, 10080, 5040, 2520, 5040, 15120, 1890, 7560, 143640, 143640, 17955, 143640, 143640, 574560, 6320160, 6320160, 6320160, 6320160
OFFSET
1,2
COMMENTS
See A357820 for more details.
FORMULA
a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/psi(k)).
MATHEMATICA
psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); psi[1] = 1; Denominator[Accumulate[1/Array[(-1)^(# + 1)*psi[#] &, 50]]]
PROG
(PARI) f(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615
a(n) = denominator(sum(k=1, n, (-1)^(k+1)/f(k))); \\ Michel Marcus, Oct 15 2022
CROSSREFS
Cf. A001615, A173290, A357820 (numerators).
Similar sequence: A211178.
Sequence in context: A085296 A306364 A357819 * A367183 A214401 A009781
KEYWORD
nonn,frac
AUTHOR
Amiram Eldar, Oct 14 2022
STATUS
approved