login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357821
Denominators of the partial alternating sums of the reciprocals of the Dedekind psi function (A001615).
3
1, 3, 12, 4, 12, 6, 24, 8, 24, 72, 72, 18, 63, 504, 63, 504, 168, 504, 2520, 2520, 10080, 1120, 3360, 3360, 672, 224, 2016, 2016, 10080, 10080, 5040, 2520, 5040, 15120, 1890, 7560, 143640, 143640, 17955, 143640, 143640, 574560, 6320160, 6320160, 6320160, 6320160
OFFSET
1,2
COMMENTS
See A357820 for more details.
FORMULA
a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/psi(k)).
MATHEMATICA
psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); psi[1] = 1; Denominator[Accumulate[1/Array[(-1)^(# + 1)*psi[#] &, 50]]]
PROG
(PARI) f(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615
a(n) = denominator(sum(k=1, n, (-1)^(k+1)/f(k))); \\ Michel Marcus, Oct 15 2022
CROSSREFS
Cf. A001615, A173290, A357820 (numerators).
Similar sequence: A211178.
Sequence in context: A085296 A306364 A357819 * A367183 A214401 A009781
KEYWORD
nonn,frac
AUTHOR
Amiram Eldar, Oct 14 2022
STATUS
approved