login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306364
Triangular array of the number of binary, rooted, leaf-labeled tree topologies with n leaves and k cherries, n >= 2, 1 <= k <= floor(n/2).
2
1, 3, 12, 3, 60, 45, 360, 540, 45, 2520, 6300, 1575, 20160, 75600, 37800, 1575, 181440, 952560, 793800, 99225, 1814400, 12700800, 15876000, 3969000, 99225, 19958400, 179625600, 314344800, 130977000, 9823275
OFFSET
2,2
COMMENTS
A cherry is an internal node with exactly two descendant leaves. Each binary, rooted, leaf-labeled tree topology with n leaves has at least 1 cherry and at most floor(n/2) cherries.
LINKS
FORMULA
T(n,k) = n! (n-2)! / (2^(2k-1) (n-2k)! k! (k-1)! ).
EXAMPLE
For n=4 leaves A, B, C, and D, a(4,1)=12 and a(4,2)=3. The 12 labeled topologies with 1 cherry are (((A,B),C),D), (((A,B),D),C), (((A,C),B),D), (((A,C),D),B), (((A,D),B),C), (((A,D),C),B), (((B,C),A),D), (((B,C),D),A), (((B,D),A),C), (((B,D),C),A), (((C,D),A),B), (((C,D),B),A). The 3 labeled topologies with 2 cherries are ((A,B),(C,D)), ((A,C),(B,D)), ((A,D),(B,C)).
Triangular array begins:
1;
3;
12, 3;
60, 45;
360, 540, 45;
2520, 6300, 1575;
20160, 75600, 37800, 1575;
181440, 952560, 793800, 99225;
1814400, 12700800, 15876000, 3969000, 99225;
...
MATHEMATICA
Table[n! (n - 2)!/(2^(2 k - 1) (n - 2 k)! k! (k - 1)!), {n, 2, 15}, {k, 1, Floor[n/2]}]
CROSSREFS
Row sums equal A001147(n-1).
Column k=1 gives A001710.
T(2n,n) gives A079484(n-1).
Sequence in context: A170857 A227106 A085296 * A357819 A357821 A367183
KEYWORD
nonn,tabf
AUTHOR
Noah A Rosenberg, Feb 10 2019
STATUS
approved