login
A306364
Triangular array of the number of binary, rooted, leaf-labeled tree topologies with n leaves and k cherries, n >= 2, 1 <= k <= floor(n/2).
2
1, 3, 12, 3, 60, 45, 360, 540, 45, 2520, 6300, 1575, 20160, 75600, 37800, 1575, 181440, 952560, 793800, 99225, 1814400, 12700800, 15876000, 3969000, 99225, 19958400, 179625600, 314344800, 130977000, 9823275
OFFSET
2,2
COMMENTS
A cherry is an internal node with exactly two descendant leaves. Each binary, rooted, leaf-labeled tree topology with n leaves has at least 1 cherry and at most floor(n/2) cherries.
LINKS
FORMULA
T(n,k) = n! (n-2)! / (2^(2k-1) (n-2k)! k! (k-1)! ).
EXAMPLE
For n=4 leaves A, B, C, and D, a(4,1)=12 and a(4,2)=3. The 12 labeled topologies with 1 cherry are (((A,B),C),D), (((A,B),D),C), (((A,C),B),D), (((A,C),D),B), (((A,D),B),C), (((A,D),C),B), (((B,C),A),D), (((B,C),D),A), (((B,D),A),C), (((B,D),C),A), (((C,D),A),B), (((C,D),B),A). The 3 labeled topologies with 2 cherries are ((A,B),(C,D)), ((A,C),(B,D)), ((A,D),(B,C)).
Triangular array begins:
1;
3;
12, 3;
60, 45;
360, 540, 45;
2520, 6300, 1575;
20160, 75600, 37800, 1575;
181440, 952560, 793800, 99225;
1814400, 12700800, 15876000, 3969000, 99225;
...
MATHEMATICA
Table[n! (n - 2)!/(2^(2 k - 1) (n - 2 k)! k! (k - 1)!), {n, 2, 15}, {k, 1, Floor[n/2]}]
CROSSREFS
Row sums equal A001147(n-1).
Column k=1 gives A001710.
T(2n,n) gives A079484(n-1).
Sequence in context: A170857 A227106 A085296 * A357819 A357821 A367183
KEYWORD
nonn,tabf
AUTHOR
Noah A Rosenberg, Feb 10 2019
STATUS
approved