OFFSET
2,2
COMMENTS
A cherry is an internal node with exactly two descendant leaves. Each binary, rooted, leaf-labeled tree topology with n leaves has at least 1 cherry and at most floor(n/2) cherries.
LINKS
N. A. Rosenberg, Enumeration of lonely pairs of gene trees and species trees by means of antipodal cherries, Adv. Appl. Math. 102 (2019), 1-17.
T. Wu, K. P. Choi, On joint subtree distributions under two evolutionary models, Theor. Pop. Biol. 108 (2016), 13-23.
FORMULA
T(n,k) = n! (n-2)! / (2^(2k-1) (n-2k)! k! (k-1)! ).
EXAMPLE
For n=4 leaves A, B, C, and D, a(4,1)=12 and a(4,2)=3. The 12 labeled topologies with 1 cherry are (((A,B),C),D), (((A,B),D),C), (((A,C),B),D), (((A,C),D),B), (((A,D),B),C), (((A,D),C),B), (((B,C),A),D), (((B,C),D),A), (((B,D),A),C), (((B,D),C),A), (((C,D),A),B), (((C,D),B),A). The 3 labeled topologies with 2 cherries are ((A,B),(C,D)), ((A,C),(B,D)), ((A,D),(B,C)).
Triangular array begins:
1;
3;
12, 3;
60, 45;
360, 540, 45;
2520, 6300, 1575;
20160, 75600, 37800, 1575;
181440, 952560, 793800, 99225;
1814400, 12700800, 15876000, 3969000, 99225;
...
MATHEMATICA
Table[n! (n - 2)!/(2^(2 k - 1) (n - 2 k)! k! (k - 1)!), {n, 2, 15}, {k, 1, Floor[n/2]}]
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Noah A Rosenberg, Feb 10 2019
STATUS
approved