login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357180
First run-length of the n-th composition in standard order.
4
0, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 5, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2
OFFSET
0,4
COMMENTS
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
EXAMPLE
Composition 87 in standard order is (2,2,1,1,1), so a(87) = 2.
MATHEMATICA
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n, 2]], 1], 0]]//Reverse;
Table[If[n==0, 0, First[Length/@Split[stc[n]]]], {n, 0, 100}]
CROSSREFS
See link for sequences related to standard compositions.
For parts instead of run-lengths we have A065120, last A001511.
The version for Heinz numbers of partitions is A067029, last A071178.
This is the first part of row n of A333769.
For minimal instead of first we have A357138, maximal A357137.
The last instead of first run-length is A357181.
A051903 gives maximal part in prime signature.
A061395 gives maximal prime index.
A124767 counts runs in standard compositions.
A286470 gives maximal difference of prime indices.
A333766 gives maximal part of standard compositions, minimal A333768.
A353847 ranks run-sums of standard compositions.
Sequence in context: A324247 A138904 A357138 * A196660 A342323 A374433
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 24 2022
STATUS
approved