OFFSET
0,7
LINKS
Brian Conrey and Neil Shah, Which numbers are not the sum plus the product of three positive integers?, 2021 preprint. arXiv:2112.15551 [math.NT], 2021-2022.
FORMULA
Conrey & Shah prove that a(n) << n^(1.3) * log n * (log log n)^4, and conjecture that a(n) << n^e for any e > 0.
Conrey & Shah prove that the average value of a(n) is (log n)^2/2, in the sense that Sum_{k <= n} a(k) ~ n*(log n)^2/2.
a(n) = 0 iff n = 0 or n belongs to A350535. - Rémy Sigrist, Oct 21 2022
EXAMPLE
6 = 2*1*1 + 2 + 1 + 1 = 1*2*1 + 1 + 2 + 1 = 1*1*2 + 1 + 1 + 2, so a(6) = 3.
PROG
(PARI) a(n)=sum(x=1, (n-1)\2, my(s); for(y=1, x, my(m=x*y+1); if(m+x+y>n, break); my(N=n-y-x, z); if(N%m, next); z=N/m; z<=y && s += [1, 3, 6][#Set([x, y, z])]); s)
(Python)
from sympy.utilities.iterables import combinations_with_replacement
from math import prod
def A357062(n): return sum(max(1, 3*(len(set(d))-1)) for d in combinations_with_replacement(range(1, n+1), 3) if prod(d)+sum(d) == n) # Chai Wah Wu, Oct 21 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Charles R Greathouse IV, Oct 13 2022
STATUS
approved