login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375064
Expansion of 1 / Sum_{k in Z} x^(3*k) / (1 - x^(5*k+1)).
3
1, 0, -1, -1, 0, 3, 0, -3, -3, 1, 9, 1, -9, -9, 3, 22, 3, -22, -22, 9, 51, 8, -51, -51, 21, 108, 19, -108, -108, 48, 221, 42, -221, -221, 99, 429, 86, -429, -428, 199, 810, 170, -809, -807, 378, 1479, 321, -1476, -1470, 702, 2640, 589, -2631, -2618, 1258, 4599, 1050, -4577, -4548, 2211
OFFSET
0,6
FORMULA
G.f.: Product_{k>0} (1-x^(5*k-2)) * (1-x^(5*k-3)) / (1-x^(5*k))^2.
PROG
(PARI) my(N=60, x='x+O('x^N)); Vec(1/sum(k=-N, N, x^(3*k)/(1-x^(5*k+1))))
(PARI) my(N=60, x='x+O('x^N)); Vec(prod(k=1, N, (1-x^(5*k-2))*(1-x^(5*k-3))/(1-x^(5*k))^2))
CROSSREFS
Convolution inverse of A340454.
Sequence in context: A097994 A318050 A053604 * A066958 A357062 A066851
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jul 29 2024
STATUS
approved