

A270028


a(n) is the smallest b >= 3 for which the baseb representation of n contains at least one 1 (or 0 if no such base exists).


11



3, 0, 3, 3, 3, 4, 3, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 4, 3, 3, 3, 4, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 5, 3, 3, 3, 6, 3, 6, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 4, 3, 3, 3, 4, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

If we drop the b >= 3 requirement, then this sequence becomes A007395 (the constant 2 sequence).
a(n) > 0 for n >= 3 since the base(n1) representation of n is 11.
a(n)=3 if and only if n is in A081606.
The only perfect kth powers (k >= 2) that can appear in this sequence are 2^k with k a prime number.
The first n for which a(n)=7 is 560.
The first n for which a(n)=8 is 870899850.
The first n for which a(n)=10 is 871017138.
The first n for which a(n)=11 is 65473886952.
The first n for which a(n)=12 is 65473886954.


LINKS



MATHEMATICA

Table[SelectFirst[Range[3, 10], DigitCount[n, #, 1] > 0 &], {n, 3, 120}] (* Michael De Vlieger, Mar 10 2016, Version 10 *)


PROG

(PARI) a(n) = if (n==2, 0, my(b=3); while(!vecsearch(Set(digits(n, b)), 1), b++); b); \\ Michel Marcus, Mar 10 2016


CROSSREFS



KEYWORD

nonn,base


AUTHOR



STATUS

approved



