login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356749
a(n) is the number of trailing 1's in the dual Zeckendorf representation of n (A104326).
4
0, 1, 0, 2, 1, 0, 3, 0, 2, 1, 0, 4, 1, 0, 3, 0, 2, 1, 0, 5, 0, 2, 1, 0, 4, 1, 0, 3, 0, 2, 1, 0, 6, 1, 0, 3, 0, 2, 1, 0, 5, 0, 2, 1, 0, 4, 1, 0, 3, 0, 2, 1, 0, 7, 0, 2, 1, 0, 4, 1, 0, 3, 0, 2, 1, 0, 6, 1, 0, 3, 0, 2, 1, 0, 5, 0, 2, 1, 0, 4, 1, 0, 3, 0, 2, 1, 0
OFFSET
0,4
COMMENTS
The asymptotic density of the occurrences of k = 0, 1, 2, ... is 1/phi^(k+2), where phi = 1.618033... (A001622) is the golden ratio.
The asymptotic mean of this sequence is phi.
LINKS
EXAMPLE
n a(n) A104326(n)
- ---- ----------
0 0 0
1 1 1
2 0 10
3 2 11
4 1 101
5 0 110
6 3 111
7 0 1010
8 2 1011
9 1 1101
MATHEMATICA
fb[n_] := Module[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; fr]; f[v_] := Module[{m = Length[v], k}, k = m; While[v[[k]] == 1, k--]; m - k]; a[n_] := Module[{v = fb[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i ;; i + 2]] == {1, 0, 0}, v[[i ;; i + 2]] = {0, 1, 1}; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, 0, f[v[[i[[1, 1]] ;; -1]]]]]; Array[a, 100, 0]
CROSSREFS
Similar sequences: A003849, A035614, A276084, A278045.
Sequence in context: A143153 A127448 A128179 * A178780 A058558 A210869
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Aug 25 2022
STATUS
approved