login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356100
a(n) = Sum_{k=1..n} (k - 1)^n * floor(n/k).
2
0, 1, 9, 99, 1301, 20581, 376891, 7914216, 186905206, 4915451602, 142368695176, 4506118905870, 154720069309364, 5729167232515112, 227585086051159866, 9654819212943764500, 435659280972794395356, 20836049921760968809231, 1052864549462731148832219
OFFSET
1,3
FORMULA
a(n) = A319194(n) - A332469(n).
a(n) = Sum_{k=1..n} Sum_{d|k} (d - 1)^n.
a(n) = [x^n] (1/(1-x)) * Sum_{k>=1} (k - 1)^n * x^k/(1 - x^k).
MATHEMATICA
Table[Sum[(k-1)^n Floor[n/k], {k, n}], {n, 20}] (* Harvey P. Dale, Dec 14 2024 *)
PROG
(PARI) a(n) = sum(k=1, n, (k-1)^n*(n\k));
(PARI) a(n) = sum(k=1, n, sigma(k, n)-(n\k)^n);
(PARI) a(n) = sum(k=1, n, sumdiv(k, d, (d-1)^n));
(Python)
def A356100(n): return sum((k-1)**n*(n//k) for k in range(2, n+1)) # Chai Wah Wu, Jul 26 2022
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Seiichi Manyama, Jul 26 2022
STATUS
approved